已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,1、平面向量的坐标表示与平面向量分解定理的关系。 2、平面向量的坐标是如何定义的? 3、平面向量的运算有何特点?,平面向量的基本定理及坐标表示,平面向量的正交分解,在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便。,我们把(x,y)叫做向量a 的(直角)坐标,记作 a=(x,y), 其中x叫做a 在x轴上的坐标,y叫做a在y轴上的坐标,(x ,y)叫做向量的坐标表示。,a,y,j,i,O,图 1,x,xi,yj,平面向量的坐标表示,a=xi+yj,其中i,j为向量 i,j,a,y,j,i,O,图 1,x,xi,yj,其中xi为x i,yj为y j,y,x,O,y,x,j,A(x,y),a,如图,在直角坐标平面内,以原 点O为起点作OA=a,则点A的位 置由a唯一确定。,设OA=xi+yj,则向量OA的坐标 (x,y)就是点A的坐标;反过来, 点A的坐标(x,y)也就是向量OA 的坐标。因此,在平面直角坐标 系内,每一个平面向量都可以用 一对实数唯一表示。,i,例1 如图,用基底i,j分别表示向量a、b、c、 d ,并求出它们的坐标。,j,y,x,O,i,a,A1,A,A2,b,c,d,解:由图3可知a=AA1+AA2=2i+3j, a=(2,3),同理,b=-2i+3j=(-2,3),c=-2i-3j=(-2,-3),d=2i-3j=(2,-3),平面向量的坐标运算,思考:,这就是说,两个向量和与差的坐标分别等 于这两个向量相应坐标的和与差。,平面向量的坐标运算,结论: 一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标。,如图,已知A(x1,y1),B(x2,y2), 则 AB= OB - OA = (x2,y2) - (x1,y1) = (x2-x1,y2-y1),你能在图中标出坐标为 的P点吗?,已知a=(x,y)和实数,那么 a= (x, y) 即 a=(x, y),这就是说,实数与向量的积的坐 标等用这个实数乘以原来向量的 相应坐标。,例2 已知a(2,1),b(3,4),求a+b,ab,3a+4b,例3 已知平行四边形ABCD的三个定点A、B、C的坐标分别为(2,1)、 (1,3)、(3,4),求顶点D的坐标,例4 已知平行四边形ABCD的三个定点A、B、C的坐标分别为(2,1)、(1,3)、(3,4),求顶点D的坐标,练习,设a=(x1,y1),b=(x2,y2),其中b是非零向量,那么可以知道,a/b的充要条件是存在一实数,使 a= b 这个结论如果用坐标表示,可写为 (x1,y1)= (x2,y2) 即 x1= x2 y1= y2,平面向量共线的坐标表示,问题:共线向量如何用坐标来表示呢?,消去后得 也就是说,a/b(b0)的等价表示是,x1y2-x2y1=0,x1y2-x2y1=0,练习:下列向量组中,能作为表示它们所在平面内所有向量的基底,正确的有( ) (1)e1=( -1 , 2 ),e2=( 5 , 7 ) (2)e1=( 3 , 5 ),e2=( 6 , 10 ) (3)e1=( 2 , -3 ),e2=( 1/2 , -3/4 ),例5、已知 a=(4,2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026校招:财务BP经理面试题及答案
- 2026校招:PHP开发笔试题及答案
- 餐厅投诉处理培训
- 小区应急防汛演练方案
- 2025年行政执法人员考试题库及参考答案
- 食品生产许可证管理办法培训试题及答案
- (易错题)高中数学必修三第一章《统计》测试卷(包含答案解析)
- 餐前餐中餐后培训
- 飞机电磁干扰培训课件
- 2026年博物馆展厅改造合同二篇
- 2026年离婚协议(标准版)
- 数学试卷江苏省南京市2025-2026学年12月七校联合学情调研(12.10-12.12)
- 【英语】【宾语从句】讲解疯狂动物城版本【课件】
- 警用无人机教学课件
- 2025年及未来5年中国商用车车联网行业市场运营现状及投资规划研究建议报告
- 3 岁以下婴幼儿回应性照护指南
- 故宫授权管理办法
- 慢乙肝健康宣教课件
- 2025年浙江省中考数学真题含答案
- 2025年甘肃陇南市中考自主招生数学试卷真题(含答案)
- 房屋建筑和市政基础设施工程勘察文件编制深度规定(2020年版)
评论
0/150
提交评论