 
         
         
         
         
        
            已阅读5页,还剩44页未读,            继续免费阅读
        
        
                版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
            ,三、二重积分的性质,第一节,一、引例,二、二重积分的定义与可积性,四、曲顶柱体体积的计算,二重积分的概念与性质,第十章,第九章,一元函数积分学,多元函数积分学,重积分,曲线积分,曲面积分,重 积 分,特点:平顶.,柱体体积=?,特点:曲顶.,曲顶柱体,曲顶柱体的体积,一、问题的提出,解法: 类似定积分解决问题的思想:,一、引例,1.曲顶柱体的体积,给定曲顶柱体:,底: xOy 面上的闭区域 D,顶: 连续曲面,侧面:以 D 的边界为准线 , 母线平行于 z 轴的柱面,求其体积.,“大化小, 常代变, 近似和, 求 极限”,1)“大化小”,用任意曲线网分D为 n 个区域,以它们为底把曲顶柱体分为 n 个,2)“常代变”,在每个,3)“近似和”,则,中任取一点,小曲顶柱体,4)“取极限”,令,2. 平面薄片的质量,有一个平面薄片, 在 xOy 平面上占有区域 D ,计算该薄片的质量 M .,度为,设D 的面积为 ,则,若,非常数 ,仍可用,其面密,“大化小, 常代变,近似和, 求极限”,解决.,1)“大化小”,用任意曲线网分D 为 n 个小区域,相应把薄片也分为小块 .,2)“常代变”,中任取一点,3)“近似和”,4)“取极限”,则第 k 小块的质量,两个问题的共性:,(1) 解决问题的步骤相同,(2) 所求量的结构式相同,“大化小, 常代变, 近似和,取极限”,曲顶柱体体积:,平面薄片的质量:,二、二重积分的定义及可积性,定义:,将区域 D 任意分成 n 个小区域,任取一点,若存在一个常数 I , 使,可积 ,在D上的二重积分.,积分和,是定义在有界区域 D上的有界函数 ,对二重积分定义的说明:,二重积分的几何意义,当被积函数大于零时,二重积分是柱体的体积,当被积函数小于零时,二重积分是柱体的体积的负值,引例1中曲顶柱体体积:,引例2中平面薄板的质量:,如果 在D上可积,元素d也常记作,二重积分记作,这时,分区域 D ,因此面积,可用平行坐标轴的直线来划,二重积分存在定理:,若函数,定理2.,(证明略),定理1.,在D上可积.,限个点或有限条光滑曲线外都连续 ,积.,在有界闭区域 D上连续,则,若有界函数,在有界闭区域 D 上除去有,例如,在 D :,上二重积分存在 ;,在D 上,二重积分不存在 .,三、二重积分的性质,( k 为常数), 为D 的面积, 则,特别, 由于,则,5. 若在D上,6. 设,D 的面积为 ,则有,7.(二重积分的中值定理),证: 由性质6 可知,由连续函数介值定理, 至少有一点,在闭区域D上, 为D 的面积 ,则至少存在一点,使,使,连续,因此,解,例2. 估计下列积分之值,解: D 的面积为,由于,积分性质5,即: 1.96 I 2,例3. 比较下列积分的大小:,其中,解: 积分域 D 的边界为圆周,它在与 x 轴的交点 (1,0) 处与直线,从而,而域 D 位于直线的上方, 故在 D 上,解,例5. 判断积分,的正负号.,解: 分积分域为,则,原式 =,猜想结果为负 但不好估计 .,舍去此项,8. 设函数,D 位于 x 轴上方的部分为D1 ,当区域关于 y 轴对称, 函数关于变量 x 有奇偶性时, 仍,在 D 上,在闭区域上连续,域D 关于x 轴对称,则,则,有类似结果.,在第一象限部分, 则有,如果积分区域为:,其中函数 、 在区间 上连续.,1、利用直角坐标系计算二重积分,X型,四、曲顶柱体体积的计算,四、曲顶柱体体积的计算,设曲顶柱的底为,任取,平面,故曲顶柱体体积为,截面积为,截柱体的,记作,如果积分区域为:,Y型,同样, 曲顶柱的底为,则其体积可按如下两次积分计算,记作,X型区域的特点: 穿过区域且平行于y轴的直线与区域边界相交不多于两个交点.,Y型区域的特点:穿过区域且平行于x轴的直线与区域边界相交不多于两个交点.,若区域如图,,在分割后的三个区域上分别使用积分公式,则必须分割.,解,积分区域如图,解,积分区域如图,解,原式,例4. 求两个底圆半径为R 的直交圆柱面所围的体积.,解: 设两个直圆柱方程为,利用对称性, 考虑第一卦限部分,其曲顶柱体的顶为,则所求体积为,解,解,解,解,曲面围成的立体如图.,内容小结,1. 二重积分的定义,2. 二重积分的性质,(与定积分性质相似),3. 曲顶柱体体积的计算,二次积分法,X型,Y型,(在积分中要正确选择积分次序),被积函数相同, 且非负,思考与练习,解:,由它们的积分域范围可知,1. 比较下列积分值的大小关系:,2. 设D 是第二象限的一个有界闭域 , 且 0 y 1, 则,的大小顺序为 ( ),提示: 因 0 y 1, 故,故在D上有,3. 计算,解:,4. 证明:,其中D 为,解: 利用题中 x , y 位置的对称性, 有,又 D 的面        
    温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 遂川学校植树节活动方案
- 街舞集训活动方案
- 过年返乡活动方案
- 连锁超市立减活动方案
- 邮政联合创维活动方案
- 蜜柚产业发展活动方案
- 蛋糕怎样做宣传活动方案
- 2025年悬崖翻车测试题及答案
- 普法安全考试题库及答案解析
- 商务局面试题目及答案
- 2024年砌筑工(高级技师)技能鉴定理论考试题库(含答案)
- 2024年初级招标采购从业人员《招标采购法律法规》考前必刷必练题库500题(含真题、必会题)
- 2024年北京某中学初一(上)期中语文试题及答案
- 辽宁省抚顺市新抚区2024-2025学年九年级上学期第一次月考数学试题(含答案)
- 道路改造施工方案
- 劳务费结算协议书
- 中西医协同发展多学科诊疗制度
- 党校培训课程安排
- 项目化学习课件浙教版科学八年级上册
- 新《劳动合同法》知识学习考试题库200题(含答案)
- 中职教育二年级上学期文化艺术《第二十讲 渐增层次的修剪》课件
 
            
评论
0/150
提交评论