




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 例1. 已知:如图1所示,中,。 求证:DEDF 证明:连结CD 例2. 已知:如图2所示,ABCD,ADBC,AECF。 求证:EF 证明:连结AC 在和中, 在和中, 例3. 如图3所示,设BP、CQ是的内角平分线,AH、AK分别为A到BP、CQ的垂线。 求证:KHBC 证明:延长AH交BC于N,延长AK交BC于M BH平分ABC 又BHAH BHBH 同理,CACM,AKKM 是的中位线 即KH/BC 例4. 已知:如图4所示,ABAC,。 求证:FDED 证明一:连结AD 在和中, 证明二:如图5所示,延长ED到M,使DMED,连结FE,FM,BM 3、证明一线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) 例5. 已知:如图6所示在中,BAC、BCA的角平分线AD、CE相交于O。 求证:ACAECD 证明:在AC上截取AFAE 又 即 例6. 已知:如图7所示,正方形ABCD中,F在DC上,E在BC上,。 求证:EFBEDF 证明:延长CB至G,使BGDF 在正方形ABCD中, 又 即GAEFAE 4、中考题: 如图8所示,已知为等边三角形,延长BC到D,延长BA到E,并且使AEBD,连结CE、DE。 求证:ECED 证明:作DF/AC交BE于F 是正三角形 是正三角形 又AEBD 即EFAC 例题:已知:如图9所示,求证: 证明一:延长AC到E,使AEAB,连结DE 在和中, 证明二:如图10所示,在AB上截取AFAC,连结DF 则易证 【实战模拟】 1. 已知:如图11所示,中,D是AB上一点,DECD于D,交BC于E,且有。求证: 2. 已知:如图12所示,在中,CD是C的平分线。 求证:BCACAD3. 已知:如图13所示,过的顶点A,在A内任引一射线,过B、C作此射线的垂线BP和CQ。设M为BC的中点。 求证:MPMQ4. 中,于D,求证:【试题答案】 1. 证明:取CD的中点F,连结AF 又 证明:延长CA至E,使CECB,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 真丝面料穿着注意事项规定
- 雪中的美景与温情写景作文13篇
- 企业人力资源配置与招聘分析工具
- 流程化管理标准作业流程搭建和优化设计指南
- 店面转让合同模板及法律注意事项
- 产品质量检测报告生成工具快速出报告系统
- 工程机械采购合同
- 从差异到启示:中美食品安全刑法规制的深度剖析与中国路径探索
- Ang-(1-7)对脂质介导的人肾小球系膜细胞损伤的影响及其机制探究
- 智能水电调度策略-洞察及研究
- 测绘定密管理办法
- 第3节 跨学科实践:保护地球家园-教科版九年级《物理》上册教学课件
- 多租户隔离-第1篇-洞察及研究
- 巨量千川-内容创意(初级) 营销师认证考试题及答案
- 小学可爱的中国课件
- 智慧高速公路解决方案
- 商务英语就业前景调研报告
- Unit4SectionA2a2d课件-人教版九年级英语全一册
- 幼儿园安全事故责任认定
- 房地产投资公司总经理岗位职责
- 展会礼仪培训课程
评论
0/150
提交评论