




已阅读5页,还剩43页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第八章 平面解析几何,第一节 直线的倾斜角与斜率、直线方程,抓 基 础,明 考 向,提 能 力,教 你 一 招,我 来 演 练,备考方向要明了,一、直线的倾斜角与斜率 1直线的倾斜角 (1)定义:x轴 与直线 的方向所成的角叫做这条 直线的倾斜角当直线与x轴平行或重合时,规定它的 倾斜角为 . (2)倾斜角的范围为 ,正向,向上,0,0,),正切值,tan,二、直线方程的形式及适用条件,yy0k(xx0),ykxb,垂直于x轴,垂直于x轴,垂直于坐,标轴,垂直于,坐标轴,过,原点,AxByC0 (A,B不全为0),答案:B,答案:A,3直线l:axy2a0在x轴和y轴上的截距相等, 则a的值是 ( ) A1 B1 C2或1 D2或1,答案:D,4.(教材习题改编)过点P(2,m),Q(m,4)的直线的斜率 等于1.则m的值为_,答案: 1,5(教材习题改编)过点M(3,4)且在两坐标轴上的截 距互为相反数的直线方程为_,1直线的倾斜角与斜率的关系 斜率k是一个实数,当倾斜角90时,ktan.直线都有斜倾角,但并不是每条直线都存在斜率,倾斜角为90的直线无斜率,2直线方程的点斜式、两点式、斜截式、截距式等都 是直线方程的特殊形式,其中点斜式是最基本的,其他形式的方程皆可由它推导直线方程的特殊形式都具有明显的几何意义,但又都有一些特定的限制条件,如点斜式方程的使用要求直线存在斜率;截距式方程的使用要求横纵截距都存在且均不为零;两点式方程的使用要求直线不与坐标轴垂直因此应用时要注意它们各自适用的范围,以避免漏解,答案 B,本例的条件变为:若过点P(1a,1a)与Q(3,2a)的直线的倾斜角为钝角,则实数a的取值范围是_,答案:(2,1),巧练模拟(课堂突破保分题,分分必保!),答案:B,冲关锦囊 1求倾斜角的取值范围的一般步骤 (1)求出斜率ktan的取值范围 (2)利用三角函数的单调性,借助图像或单位圆数形结合, 确定倾斜角的取值范围 2求倾斜角时要注意斜率是否存在.,精析考题 例2 (2012龙岩期末)已知ABC中,A(1,4),B(6,6),C(2,0)求: (1)ABC中平行于BC边的中位线所在直线的一般式方程和截距式方程; (2)BC边的中线所在直线的一般式方程,并化为截距式方程,答案:A,3(2012温州模拟)已知A(1,1),B(3,1),C(1,3),则 ABC的BC边上的高所在直线方程为 ( ) Axy0 Bxy20 Cxy20 Dxy0,答案: B,答案:A,求直线方程的方法主要有以下两种 (1)直接法:根据已知条件,选择适当的直线方程形式, 直接写出直线方程; (2)待定系数法:先设出直线方程,再根据已知条件求出 待定系数,最后代入求出直线方程.,冲关锦囊,精析考题 例3 已知直线l:kxy12k0(kR) (1)证明:直线l过定点; (2)若直线l不经过第四象限,求k的取值范围; (3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设AOB的面积为S,求S的最小值及此时直线l的方程,自主解答 (1)证明:法一:直线l的方程可化为yk(x2)1, 故无论k取何值,直线l总过定点(2,1) 法二:设直线过定点(x0,y0),则kx0y012k0对任意kR恒成立,即(x02)ky010恒成立, 所以x020,y010, 解得x02,y01,故直线l总过定点(2,1),巧练模拟(课堂突破保分题,分分必保!),5(2012东北三校联考)已知直线l过点M(2,1),且分别与x 轴、y轴的正半轴交于A、B两点,O为原点 (1)当AOB面积最小时,直线l的方程是_; (2)当|MA|MB|取得最小值时,直线l的方程是_,答案:(1)x2y40 (2)xy30,冲关锦囊,1解决直线方程的综合问题时,除灵活选择方程的形式 外,还要注意题目中的隐含条件 2与直线方程有关的最值或范围问题可以数形结合也可 从函数角度考虑构建目标函数进而转化求最值,数学思想(十四)数形结合思想在直线中的应用,考题范例 (2011温州第一次适应性测试)当直线ykx与曲线y|x|x2|有3个公共点时,实数k的取值范围是 ( ) A(0,1) B(0,1 C(1,) D1,),巧妙运用 依题意得,当x2时,yx(x2)2.在直角坐标系 中画出该函数的图像(如图),将x轴绕着原点沿逆时针方向旋转,当旋转到直线恰好经过点(2,2)的过程中,相应的直线(不包括过点(2,2)的直线)与该函数的图像都有三个不同的交点,再进一步旋转,相应的直线与该函数的图像都不再有三个不同的交点,因此满足题意的k的取值范围是(0,1),答案:A,题后悟道 高手点拨:本题若直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 象字演变课件
- 诺曼底号遇难记课件教学
- 2025版危险货物运输全程监控及追溯服务合同
- 2025年车辆安全检测设备销售与租赁合同范本
- 2025年度化工原料采购合同范本版
- 2025年度高端品牌形象插画设计服务合同
- 2025年度高科技产业园基础配套设施施工合同
- 2025年度电子商务平台入驻服务合同范本
- 2025年度农业科技行业员工标准劳动合同范本
- 2025年地基处理与地下空间利用分包合同样本
- 2025届湖南省永州市高三年级上册第一次模拟考试物理试题(一模)附答案
- 《汽车发动机构造与检修(第2版)》课件 王雷 项目1、2 汽车发动机基本知识;发动机曲柄连杆机构构造与检修
- 腹腔镜风险评估及应急预案
- 【追星文化对大学生消费行为及观念的影响问卷调研报告(含问卷)(论文)11000字】
- 2025届高三数学一轮复习备考经验交流
- 中核集团中辐院招聘笔试真题2022
- 泡沫箱子合同范本
- 智能制造装备与集成 课件 02 智能制造架构与装备
- 2024-2029全球及中国土豆泥行业市场发展分析及前景趋势与投资发展研究报告
- 新人教版初二上册(八上)数学全册课件
- 补贴协议书范本
评论
0/150
提交评论