选修2-1311空间向量加减法.ppt_第1页
选修2-1311空间向量加减法.ppt_第2页
选修2-1311空间向量加减法.ppt_第3页
选修2-1311空间向量加减法.ppt_第4页
选修2-1311空间向量加减法.ppt_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

选修2-1 3.1.1 空间向量及其加减运算,这需要进一步来认识空间中的向量,如图一块均匀的正三角形钢板质量为500kg, 在它的顶点处分别受F1、F2、F3三个力,每 个力与同它相邻的三角形的两边的夹角都是 60度,且F1= F2 =F3=200kg。 这块钢板在这些力的作用下将怎样运动? 这三个力至少多大时,才能提起这块钢板?,看下面建筑,这个建筑钢架中有很多向量的身影,但他们有些并不在同一平面内这就是我们今天要学习的空间向量.,复习回顾:平面向量,定义:,既有大小又有方向的量叫做向量。,用有向线段表示,用小写字母表示,或者用表示 向量的有向线段的起点和终点字母表示,相等向量:,零向量:,单位向量:,相反向量:,长度为0的向量,模为1的向量,长度相等且方向相同的向量,长度相等且方向相反的向量,几何表示法:,字母表示法:,2、平面向量的加法、减法,向量加法的三角形法则,向量加法的平行四边形法则,向量减法的三角形法则,3、平面向量的加法运算律,加法交换律:,加法结合律:,新课讲授,阅读教材P84-P85 ,研究空间向量与平面向量 的关系。回答下面的问题:,(1) 试说出:空间向量与平面向量有何共同之处?,(2) 空间任意两个向量是否都可以转化为平面向量?为什么?,(3)把平面向量的运算推广到空间向量,怎样定义 空间向量的加法,减法运算?满足什么运算律?,(5) 什么是平行六面体?它与平行四边形有何联系?它的特征有哪些?,(4)从平面和空间两个角度验证向量加法结合律?,(1)试说出:空间向量与平面向量 有何共同之处?,1、定义:,在空间,我们把既有大小又有 方向的量叫做空间向量。,2、空间向量的表示法(几何、字母) 与平面向量相同;,3、空间中零向量、单位向量、相等向 量、相反向量等概念与平面向量中相同;,(2) 空间任意两个向量是否都可以转化 为平面向量?为什么?,由O、A、B、三点确定一个平面 或共线可知,,已知空间两个任意向量 、,作,空间任意两个向量都 可用同 一平面内的有向线段表示。,结论1:凡涉及空间两个向量的问题,平面向量中有关结论仍适用于它们。,(3)与平面向量运算一样,我们定义 空间向量的加法、减法运算如下:,空间向量加法的推广:,(1)首尾相接的若干向量之和,等于由起始 向量的起点指向末尾向量的终点的向量;,(2)首尾相接的若干向量若构成一个封闭图 形,则它们的和为零向量.,加法交换律:,加法结合律:,同样,空间向量的加法运算 满足如下运算律:,O,B,C,O,B,C,(平面向量),(5)平面向量加法结合律:,A,A,O,A,B,C,O,A,B,C,(5)空间向量加法结合律:,(空间向量),平行六面体ABCD-A1B1C1D1的六个面都是平行四边形。,(6)平行六面体,定义1:底面是平行四边形的四棱柱。,定义2:平行四边形ABCD按向量 平移到 A1B1C1D1的轨迹形成的几何体叫做平行六面体.,例1:已知平行六面体ABCD-A1B1C1D1,化简下列 向量表达式 (如图),问题(7):一般地,三个不共面的向量的和与这三个向量有什么关系?,典例剖析:,F1,F2,F1=10N,F2=15N,F3=30N,F3,结论2:始点相同的三个不共面的向量之和,等于 以这三个向量为棱的平行六面体的公共始点为始 点的对角线所示向量。,平行六面体法则,思考1:在例1中,思考2:,A,B,M,C,D,例2 在空间四边形ABCD中,点M、N分别是 BC、CD边的中点,化简,N,思考:,平面向量,概念,加、 减法 运算,运 算 律,定义,表示法,相等向量,减法:三角形法则,加法:平行四边形法则 或三角形法则,空间向量,加法交换律,加法结合律,小结,类比方法 数形结合思想,零向量,相反向量,减法:三角形法则,加法:平行四边形法则 或三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论