D116高斯公式斯托克斯公式.ppt_第1页
D116高斯公式斯托克斯公式.ppt_第2页
D116高斯公式斯托克斯公式.ppt_第3页
D116高斯公式斯托克斯公式.ppt_第4页
D116高斯公式斯托克斯公式.ppt_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,第六节,Green 公式,Gauss 公式,推广,一、高斯公式,高斯公式,第十一章,斯托克斯公式,二、斯托克斯公式,Stokes 公式,一、高斯 ( Gauss ) 公式,定理1. 设空间闭区域 由分片光滑的闭曲, 上有连续的一阶偏导数 ,函数 P, Q, R 在,面 所围成,则有,(Gauss 公式),高斯, 的方向取外侧,以下形式:,其中,,是在点(x,y,z)处的法,向量的方向余弦.,例1. 用Gauss 公式计算,其中 为柱面,闭域 的整个边界曲面的外侧.,解: 这里,利用Gauss 公式, 得,原式 =,及平面 z = 0 , z = 3 所围空间,思考: 若 改为内侧, 结果有何变化?,若 为圆柱侧面(取外侧) , 如何计算?,利用质心公式, 注意,例2. 利用Gauss 公式计算积分,其中 为锥面,解: 作辅助面,取上侧,介于z = 0及 z = h,之间部分的下侧, , , 为法向量的方向角.,所围区域为 ,则,利用质心公式, 注意,思考: 计算曲面积分,提示: 作取上侧的辅助面,介于平面 z= 0 及 z = 2,之间部分的下侧.,先二后一,例3.,设 为曲面,取上侧, 求,解:,作辅助面,用柱坐标,用极坐标,下侧,二、 斯托克斯公式,定理2. 设光滑曲面 的边界 是分段光滑曲线,(斯托克斯公式),个空间域内具有连续一阶偏导数, 的,侧与 的正向符合右手法则,在包含 在内的一,则有,简介,注意: 如果 是 xOy 面上的一块平面区域,则斯托克斯,公式就是格林公式,故格林公式是斯托克斯公式的特例.,定理1,为便于记忆, 斯托克斯公式还可写作:,或用第一类曲面积分表示:,定理1,例4. 利用斯托克斯公式计算积分,其中 为平面 x+ y+ z = 1 被三坐标面所截三角形的整,解: 记三角形域为 , 取上侧,则,个边界, 方向如图所示.,利用对称性,例5. 为柱面,与平面 y = z 的交线, 从 z,轴正向看为顺时针,解: 设 为平面 z = y 上被 所围椭圆域 ,且取下侧,利用斯托克斯公式得,则其法线方向余弦,公式其他形式,计算,内容小结,1. 高斯公式及其应用,公式:,应用:,计算曲面积分,(非闭曲面时注意添加辅助面的技巧),2. 斯托克斯公式,作 业,P236 1 (4), P245 2 (4) P247 4 (2)(3),第七节,思考与练习,所围立体,判断下列演算是否正确?,(1),(2), 为,备用题 设 是一光滑闭曲面,所围立体 的体, 是 外法线向量与点 ( x , y , z ) 的向径,试证,证: 设 的单位外法向量为,则,的夹角,积为V,高斯(1777 1855),德国数学家、天文学家和物理学家,是与阿基米德, 牛顿并列的伟大数学家,他的数学成就遍及各个领域 ,在数论、,级数、复变函数及椭圆函数论等方面均有一系列开创,性的贡献,他还十分重视数学的应用,地测量学和磁学的研究中发明和发展了最小二乘法、,曲面论和位势论等.,他在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论