仓库管理_ibm公司数据仓库商业智能解决方案_第1页
仓库管理_ibm公司数据仓库商业智能解决方案_第2页
仓库管理_ibm公司数据仓库商业智能解决方案_第3页
仓库管理_ibm公司数据仓库商业智能解决方案_第4页
仓库管理_ibm公司数据仓库商业智能解决方案_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1. 技术瓶颈:海量数据收集、海量数据存储、海量数据多维分析等一系列的问题,即使最热门最被业内人士看好的Hadoop技术能否撑得住?2. 资源投入:海量数据处理伴随着相应的硬件、软件需求的增长,技术人员的投入上对企业势必成为新的负担。3. 价值金矿:海量数据中的非结构化数据蕴含着的“价值金矿”,能够帮助企业从未所触及的角度和维度为企业提供商业决策和辅助。从海量数据价值挖掘层面上看,传统的思维是数据量加大是一定要考虑OLAP的,一般的报表可能5、6个小时出来结果,而基于Cube的查询可能只需要几分钟,因此从一般意义上认为处理海量数据的利器是OLAP多维分析,即建立数据仓库,建立多维数据集,基于多维数据集进行报表展现和数据挖掘等。然而目前OLAP存在的最大问题是: 业务灵活多变,必然导致业务模型随之经常发生变化,而业务维度和度量一旦发生变化,技术人员需要把整个Cube重新定义并重新生存,业务人员只能在此Cube上进行多维分析,这样就限制了业务人员快速改变问题分析的角度,从而使所谓的BI系统称为死板的日常报表系统.在思达商业智能平台 Style Intelligence上进行海量数据的多维数据分析,从业务需求的角度出发,维度和度量才是直接针对业务人员的分析语言。在自主知识产权数据块儿技术支持下,直接把维度和度量的生成交给业务人员,由业务人员自己定义好维度和度量之后,将业务的维度和度量直接运行,并最终生成报表。此种以终为始的设计思路,首先能解决传统OLAP分析中维度难以改变的问题,利用思达商业智能平台 Style Intelligence中数据非结构化的特征,业务人员可以灵活地改变问题分析的角度,对业务人员非常友善。其次思达商业智能平台Style Intelligence 在海量数据处理中利用分布式数据处理架构强大的分布式数据处理能力,无论OLAP分析中的维度增加多少,系统开销并不显著增长。、我们总羡慕别人的幸福,却常常忽略自己生活中的美好。其实,幸福很平凡也很简单,它就藏在看似琐碎的生活中。幸福的人,并非拿到了

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论