![考研数学]北京航天航空大学线性代数7-3向量的坐标.ppt_第1页](http://file.renrendoc.com/FileRoot1/2019-1/11/91110a42-5ff7-4953-8ac6-a5484dcc3c54/91110a42-5ff7-4953-8ac6-a5484dcc3c541.gif)
![考研数学]北京航天航空大学线性代数7-3向量的坐标.ppt_第2页](http://file.renrendoc.com/FileRoot1/2019-1/11/91110a42-5ff7-4953-8ac6-a5484dcc3c54/91110a42-5ff7-4953-8ac6-a5484dcc3c542.gif)
![考研数学]北京航天航空大学线性代数7-3向量的坐标.ppt_第3页](http://file.renrendoc.com/FileRoot1/2019-1/11/91110a42-5ff7-4953-8ac6-a5484dcc3c54/91110a42-5ff7-4953-8ac6-a5484dcc3c543.gif)
![考研数学]北京航天航空大学线性代数7-3向量的坐标.ppt_第4页](http://file.renrendoc.com/FileRoot1/2019-1/11/91110a42-5ff7-4953-8ac6-a5484dcc3c54/91110a42-5ff7-4953-8ac6-a5484dcc3c544.gif)
![考研数学]北京航天航空大学线性代数7-3向量的坐标.ppt_第5页](http://file.renrendoc.com/FileRoot1/2019-1/11/91110a42-5ff7-4953-8ac6-a5484dcc3c54/91110a42-5ff7-4953-8ac6-a5484dcc3c545.gif)
已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一 向量的坐标,第三节 向量的坐标 基变换与坐标变换,定义 设V是数域K上的n维线性空间,是V的一组基底, 对任意V, 可由基底线性表出,则称有序数,为元素在基底,下的坐标, 记作,定理3.1 设1, 2, , n是线性空间V的一组基底, V, 则表达式,是唯一的(坐标的唯一性).,证明,设在基底1, 2, , n下有两种表达式,则,由1, 2, , n线性无关, 得,例1 P4x的两组基底为,求,在上述两组基底下的坐标.,解,显然f(x)在第一组基底下的坐标为,(4, 3, 5, 0, 4),设,得方程组,解得,即f(x)在第二组基底下的坐标为,(7, -8, 5, 0, 4).,例2 若1, 2, , n是线性空间V的基底, 则,是V中一组基底,证明,只要证明1, 2, , n线性无关.,1, 2, , n线性无关,k11+k22+knn=0只有零解.,代入1, 2, , n的表达式, 得,(k1a11+k2a12+knan1)1+ (k1a21+k2a22+knan2)2,+ (k1a1n+k2a2n+knann)n=0,由1, 2, , n线性无关, 则,此方程组只有零解系数行列式不为零,注,(1) 例2给出了用已知基底构造其它基的方法.,(2) 利用坐标的概念, 抽象的线性空间中的元素得到数量化, 这时其运算同一般向量空间相同, 同样把n维线性空间称为n维向量空间, 它的元素也称为向量.,二 基变换与坐标变换,问题:同一元素在不同基底下的坐标不同, 坐标之间的关系如何?,定义 设1, 2, , n与1, 2, , n是n维线性空间V的两组基, 并且,令,称P为由基底1, 2, , n到1, 2, , n的过渡矩阵, (1)称为基底变换公式.,利用矩阵乘法运算的规则, (1)可以写成,(1, 2, , n)=(1, 2, , n)P.,定理3.2 设1, 2, , n与1, 2, , n是线性空间V的两组基底, 由1, 2, , n到1, 2, , n的过渡矩阵为P, 如果V中任意元素在这两组基底下坐标分别为(x1, x2, , xn)与(y1, y2, , yn), 则,或,或,(y1, y2, , yn)= (x1, x2, , xn)(P)-1.,称为坐标变换公式.,证明,设 =x11+x22+ +xnn,=y11+y22+ +ynn,由,(1, 2, , n)=(1, 2, , n)P,代入得,由坐标的唯一性, 得,由上节例2, P可逆, 因此,例3 设n维线性空间中1=(1, 0, , 0), 2=(0, 1, , 0), , n=(0, 0, , 1)是一组基底(自然基), 1=(1, 0, , 0), 2=(1, 1, 0, , 0), , n=(1, 1, , 1)也是一组基底. 求由基底1, 2, , n到1, 2, , n的过渡矩阵及坐标间的关系.,解,则,为基底1, 2, , n到1, 2, , n的过渡矩阵.,由,即,例4 在三维向量空间R3中求向量对两组基底,1=(1, 2, 1), 2=(2, 3, 3), 3=(3, 7, 1)与,1=(3, 1, 4), 2=(5, 2, 1), 3=(1, 1, -6),的不同坐标间的变换公式.,解,设R3中自然基为1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司货车出入管理制度
- 公司健身活动管理制度
- 咖啡员工请假管理制度
- 合租收纳宿舍管理制度
- 厂区用火用电管理制度
- 午托学生制度管理制度
- 医保药品追溯管理制度
- 助理医师师资管理制度
- 工厂质检宿舍管理制度
- 公司因公借款管理制度
- DB36_T 420-2019 江西省工业企业主要产品用水定额(高清无水印-可复制)
- 车间精益改善总结报告课件(PPT 19页)
- 中小学教育惩戒规则(试行)全文解读ppt课件
- TCECS 850-2021 住宅厨房空气污染控制通风设计标准
- 《冬病夏治工作指南》
- 布鲁克纳操作手册
- 印度尼西亚煤炭购销合同
- GB∕T 25119-2021 轨道交通 机车车辆电子装置
- 2022年国网输变电工程质量通病防治工作要求及技术措施[1]
- 三年级美术下册16奇石教学设计1浙美版
- 支气管分段亚段及及支气管镜检查
评论
0/150
提交评论