已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一 向量的坐标,第三节 向量的坐标 基变换与坐标变换,定义 设V是数域K上的n维线性空间,是V的一组基底, 对任意V, 可由基底线性表出,则称有序数,为元素在基底,下的坐标, 记作,定理3.1 设1, 2, , n是线性空间V的一组基底, V, 则表达式,是唯一的(坐标的唯一性).,证明,设在基底1, 2, , n下有两种表达式,则,由1, 2, , n线性无关, 得,例1 P4x的两组基底为,求,在上述两组基底下的坐标.,解,显然f(x)在第一组基底下的坐标为,(4, 3, 5, 0, 4),设,得方程组,解得,即f(x)在第二组基底下的坐标为,(7, -8, 5, 0, 4).,例2 若1, 2, , n是线性空间V的基底, 则,是V中一组基底,证明,只要证明1, 2, , n线性无关.,1, 2, , n线性无关,k11+k22+knn=0只有零解.,代入1, 2, , n的表达式, 得,(k1a11+k2a12+knan1)1+ (k1a21+k2a22+knan2)2,+ (k1a1n+k2a2n+knann)n=0,由1, 2, , n线性无关, 则,此方程组只有零解系数行列式不为零,注,(1) 例2给出了用已知基底构造其它基的方法.,(2) 利用坐标的概念, 抽象的线性空间中的元素得到数量化, 这时其运算同一般向量空间相同, 同样把n维线性空间称为n维向量空间, 它的元素也称为向量.,二 基变换与坐标变换,问题:同一元素在不同基底下的坐标不同, 坐标之间的关系如何?,定义 设1, 2, , n与1, 2, , n是n维线性空间V的两组基, 并且,令,称P为由基底1, 2, , n到1, 2, , n的过渡矩阵, (1)称为基底变换公式.,利用矩阵乘法运算的规则, (1)可以写成,(1, 2, , n)=(1, 2, , n)P.,定理3.2 设1, 2, , n与1, 2, , n是线性空间V的两组基底, 由1, 2, , n到1, 2, , n的过渡矩阵为P, 如果V中任意元素在这两组基底下坐标分别为(x1, x2, , xn)与(y1, y2, , yn), 则,或,或,(y1, y2, , yn)= (x1, x2, , xn)(P)-1.,称为坐标变换公式.,证明,设 =x11+x22+ +xnn,=y11+y22+ +ynn,由,(1, 2, , n)=(1, 2, , n)P,代入得,由坐标的唯一性, 得,由上节例2, P可逆, 因此,例3 设n维线性空间中1=(1, 0, , 0), 2=(0, 1, , 0), , n=(0, 0, , 1)是一组基底(自然基), 1=(1, 0, , 0), 2=(1, 1, 0, , 0), , n=(1, 1, , 1)也是一组基底. 求由基底1, 2, , n到1, 2, , n的过渡矩阵及坐标间的关系.,解,则,为基底1, 2, , n到1, 2, , n的过渡矩阵.,由,即,例4 在三维向量空间R3中求向量对两组基底,1=(1, 2, 1), 2=(2, 3, 3), 3=(3, 7, 1)与,1=(3, 1, 4), 2=(5, 2, 1), 3=(1, 1, -6),的不同坐标间的变换公式.,解,设R3中自然基为1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年山东护考视频题库及答案
- 2025年初三道法试卷合集及答案
- 购房出资协议书样本
- 购材料贷款合同范本
- 短车辆维修协议书
- 供货加工合同范本
- 2025年西医内科期末试卷及答案
- 2025年和田教师编制考试题目及答案
- 南师附中笔试真题及答案
- 2025重庆南岸区招聘社区工作者后备库人选300人备考题库含答案详解(b卷)
- 轻型卒中治疗指南
- 充电桩知识培训
- 农业气象学-作业1-国开(ZJ)-参考资料
- 艺术概论智慧树知到答案2024年海南师范大学
- 《国际货运代理》期末考试复习题库(含答案)
- 生物育种中心项目计划书
- 25道鼎和财产保险股份有限公司保险财务人员岗位常见面试问题含HR常问问题考察点及参考回答
- 道路运输企业两类人员安全考核题库(含答案)
- 三年级上学期数学期末试卷带答题卡
- JGJ376-2015 建筑外墙外保温系统修缮标准
- 人力资源外包服务劳务外包劳务派遣投标方案
评论
0/150
提交评论