全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题2.8 函数与方程【考纲解读】内 容要 求备注ABC函数概念与基本初等函数函数与方程1结合二次函数的图像,判断一元二次方程根的存在性及根的个数,了解函数的零点与方程根的联系2根据具体函数的图像,能够用二分法求相应方程的近似解【直击教材】1函数f(x)kx1在1,2上有零点,则k的取值范围是_【答案】2函数f(x)ln x2x6的零点个数是_【答案】13若函数f(x)x2axb的两个零点是2和3,则函数g(x)bx2ax1的零点是_【答案】,【知识清单】1函数零点所在区间的判定1函数零点的定义对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点2二分法对于在区间a,b上连续不断且f(a)f(b)0的函数yf(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法2 判断函数零点个数函数零点个数的判断通常转化为两函数图像交点的个数,其步骤是:(1)令f(x)0;(2)构造y1f1(x),y2f2(x);(3)作出y1,y2图像;(4)由图像交点个数得出结论3 函数零点的应用函数零点与函数交点关系【考点深度剖析】1函数yf(x)的零点即方程f(x)0的实根,易误认为函数图像与x轴的交点2由函数yf(x)在闭区间a,b上有零点不一定能推出f(a)f(b)0,所以f(a)f(b)0是yf(x)在闭区间a,b上有零点的充分不必要条件 【重点难点突破】考点1 函数零点所在区间的判定【1-1】函数f(x)log3xx2的零点所在的区间为_【答案】(1,2)【1-2】函数f(x)2xa的一个零点在区间(1,2)内,则实数a的取值范围是_【答案】(0,3)【解析】由条件可知f(1)f(2)0,即(22a)(41a)0,即a(a3)0,解得0a3.【思想方法】函数零点个数的判断方法(1)直接求零点:令f(x)0,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要求函数在区间a,b上是连续不断的曲线,且f(a)f(b)0,还必须结合函数的图像与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图像交点的个数:画出两个函数的图像,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点【温馨提醒】函数yf(x)的零点即方程f(x)0的实根,不要误为函数上的点考点2 判断函数零点个数【2-1】函数f(x)2x|log0.5x|1的零点个数为_个【答案】2【2-2】已知函数f(x)则函数yf(f(x)1的零点个数是_【答案】4【解析】由f(f(x)10可得f(f(x)1,又由f(2)f1.可得f(x)2或f(x).若f(x)2,则x3或x;若f(x),则x或x,综上可得函数yf(f(x)1有4个零点【思想方法】 (1)等价转化思想 (2)数形结合思想 【温馨提醒】正确作出函数图像,揭示零点性质考点3 函数零点的应用【3-1】若函数f(x)xln xa有两个零点,则实数a的取值范围为_【答案】 【3-2】已知函数f(x)有三个不同的零点,则实数a的取值范围是_【答案】【解析】依题意,要使函数f(x)有三个不同的零点,则当x0时,方程2xa0即2xa必有一个根,此时00时,方程x23axa0有两个不等的实根,即方程x23axa0有两个不等的正实根,于是有由此解得a.因此,满足题意的实数a需满足即a1.【思想方法】已知函数有零点(方程有根)求参数取值范围常用的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解【温馨提醒】正确作出函数图像,揭示零点性质【易错试题常警惕】函数在区间上有零点求参数问题,一定要注意变量或参数的取值范围如:已知集合和,若,则实数的取值范围是 【分析】,方程组,即函数在有零点,当,即时,显然成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025青海大学招聘博士-第五批考试笔试参考题库附答案解析
- 眉山市市场监督管理局调整市产品质量监督检验所招聘岗位考试笔试模拟试题及答案解析
- 2025江苏省文化和旅游厅所属事业单位招聘10人笔试考试参考题库及答案解析
- 2025年安徽省某省直事业单位委托招聘财务工作人员岗1人笔试考试备考题库及答案解析
- 2025湖北恩施州公共资源交易中心公益性岗位招聘1人笔试考试参考试题及答案解析
- 2025江西吉安吉州区禾埠卫生院招募就业见习人员4人笔试考试参考试题及答案解析
- 2025中石安环科技服务(广西)有限责任公司招聘3人考试笔试参考题库附答案解析
- 2026湖北自然资源集团校园招聘笔试考试备考试题及答案解析
- 2026上海外服管培生校园招聘笔试考试备考题库及答案解析
- 2025上海对外经贸大学学术期刊社责任编辑招聘考试笔试模拟试题及答案解析
- 2025年西藏自治区公务员申论文章写作专项训练试卷(含答案)
- 装维服务提升培训课件
- 2026年初级药士(专业知识)自测试题及答案
- 园艺工考试花卉园艺工职业技能考试题库(完整版)
- 分式的乘法与除法第2课时课件-2025-2026学年人教版八年级数学上册
- 2026年信息技术学业水平合格考考前模拟卷01(全国适用)(解析版)
- 2025危险化学品企业“5.4 安全教育和培训”解读与应用指南(编制-2025A1)
- 2025年11月福建厦门市住房和建设局及所属部分事业单位招聘非在编辅助岗位人员10人笔试考试参考题库及答案解析
- 雇佣搬运工人合同范本
- 体重管理年课件
- 眼面部防护 应急喷淋和洗眼设备
评论
0/150
提交评论