2018_2019学年高中数学第二章圆锥曲线与方程2.3抛物线2.3.2抛物线的简单几何性质讲义含解析新人教A版.docx_第1页
2018_2019学年高中数学第二章圆锥曲线与方程2.3抛物线2.3.2抛物线的简单几何性质讲义含解析新人教A版.docx_第2页
2018_2019学年高中数学第二章圆锥曲线与方程2.3抛物线2.3.2抛物线的简单几何性质讲义含解析新人教A版.docx_第3页
2018_2019学年高中数学第二章圆锥曲线与方程2.3抛物线2.3.2抛物线的简单几何性质讲义含解析新人教A版.docx_第4页
2018_2019学年高中数学第二章圆锥曲线与方程2.3抛物线2.3.2抛物线的简单几何性质讲义含解析新人教A版.docx_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.3.2抛物线的简单几何性质预习课本P6063,思考并完成以下问题 抛物线有哪些几何性质?抛物线的简单几何性质类型y22px(p0)y22px(p0)x22py(p0)x22py(p0)图象性质焦点FFFF准线xxyy范围x0,yRx0,yRxR,y0xR,y0对称轴x轴y轴顶点O(0,0)离心率e1开口方向向右向左向上向下点睛抛物线的标准方程与对称性、焦点位置的关系y2ax一次项为x项,x轴为对称轴a0时,焦点在x轴正半轴上,开口向右a0时,焦点在y轴正半轴上,开口向上a0)有一条对称轴为y轴()(2)抛物线yx2的准线方程是x()答案:(1)(2)2设点A为抛物线y24x上一点,点B(1,0),且|AB|1,则点A的横坐标为()A2B0C2或0 D2或2答案:B3过抛物线y28x的焦点作倾斜角为45的直线,则被抛物线截得的弦长为()A8 B16C32 D64答案:B4若双曲线1(p0)的左焦点在抛物线y22px的准线上,则p_.答案:4抛物线方程及其几何性质典例已知抛物线的顶点为坐标原点,对称轴为x轴,且与圆x2y24相交的公共弦长为2,求抛物线的方程解设所求抛物线的方程为y22px(p0)或y22px(p0),抛物线与圆的交点A(x1,y1),B(x2,y2)(y10,y20)的焦点F的直线交抛物线于A,B两点,且A,B两点的纵坐标之积为4,求抛物线C的方程解由于抛物线的焦点F,故可设直线AB的方程为xmy.由得y22pmyp20,设A(x1,y1),B(x2,y2),则y1y2p2,p24,由p0,可得p2,抛物线C的方程为y24x.(1)已知AB是过抛物线y22px(p0)的焦点的弦,F为抛物线的焦点,A(x1,y1),B(x2,y2),则:y1y2p2,x1x2;|AB|x1x2p(为直线AB的倾斜角);SABO(为直线AB的倾斜角);以AB为直径的圆与抛物线的准线相切(2)当直线经过抛物线的焦点,且与抛物线的对称轴垂直时,直线被抛物线截得的线段称为抛物线的通径,显然通径长等于2p.活学活用1过抛物线x24y的焦点F作直线l交抛物线于P1(x1,y1),P2(x2,y2)两点,若y1y26,则|P1P2|()A5B6C8 D10解析:选C由抛物线的定义知|P1P2|y1y2p628.2已知抛物线的顶点在原点,x轴为对称轴,经过焦点且倾斜角为的直线被抛物线所截得的弦长为6,求抛物线的标准方程解:当抛物线焦点在x轴正半轴上时,可设抛物线标准方程为y22px(p0),则焦点F,直线l的方程为yx.设直线l与抛物线的交点为A(x1,y1),B(x2,y2),过点A,B向抛物线的准线作垂线,垂足分别为点A1,点B1,则|AB|AF|BF|AA1|BB1|x1x2p6,x1x26p.由消去y,得22px,即x23px0.x1x23p,代入式得3p6p,p.所求抛物线的标准方程是y23x.当抛物线焦点在x轴负半轴上时,用同样的方法可求出抛物线的标准方程是y23x.直线与抛物线的位置关系典例若抛物线y24x与直线yx4相交于不同的两点A,B,求证OAOB.证明由消去y,得x212x160.直线yx4与抛物线相交于不同两点A,B,可设A(x1,y1),B(x2,y2),则有x1x212,x1x216.x1x2y1y2x1x2(x14)(x24)x1x2x1x24(x1x2)161616412160,即OAOB.将直线方程与抛物线方程联立,转化为一元二次方程,可通过直线与抛物线的位置关系转化为对判别式或者对向量数量积的限制条件,利用限制条件建立不等式或等式,利用根与系数的关系运算求解活学活用过点(3,2)的直线与抛物线y24x只有一个公共点,求此直线方程解:显然,直线斜率k存在,设其方程为y2k(x3),由消去x,整理得ky24y812k0.(1)当k0时,方程化为4y80,即y2,此时过(3,2)的直线方程为y2,满足条件(2)当k0时,方程应有两个相等实根由即得k或k1.所以直线方程为y2(x3)或y2(x3),即x3y90或xy10.故所求直线有三条,其方程分别为:y2,x3y90,xy10.层级一学业水平达标1以x轴为对称轴,通径长为8,顶点为坐标原点的抛物线方程是()Ay28xBy28xCy28x或y28x Dx28y或x28y解析:选C依题意设抛物线方程为y22px(p0),则2p8,所以抛物线方程为y28x或y28x.2若直线y2x与抛物线x22py(p0)相交于A,B两点,则|AB|等于()A5p B10pC11p D12p解析:选B将直线方程代入抛物线方程,可得x24pxp20.设A(x1,y1),B(x2,y2),则x1x24p,y1y29p.直线过抛物线的焦点,|AB|y1y2p10p.3设O为坐标原点,F为抛物线y24x的焦点,A为抛物线上一点,若4,则点A的坐标为()A(2,2 ) B(1,2)C(1,2) D(2,2)解析:选B设A(x,y),则y24x,又(x,y),(1x,y),所以xx2y24.由可解得x1,y2.4过点(1,0)作斜率为2的直线,与抛物线y28x交于A,B两点,则弦AB的长为()A2 B2C2 D2解析:选B设A(x1,y1),B(x2,y2)由题意知AB的方程为y2(x1),即y2x2.由得x24x10,x1x24,x1x21.|AB|2.5设F为抛物线C:y23x的焦点,过F且倾斜角为30的直线交C于A,B两点,O为坐标原点,则OAB的面积为()A. B.C. D.解析:选D易知抛物线中p,焦点F,直线AB的斜率k,故直线AB的方程为y,代入抛物线方程y23x,整理得x2x0.设A(x1,y1),B(x2,y2),则x1x2.由抛物线的定义可得弦长|AB|x1x2p12,结合图象可得O到直线AB的距离dsin 30,所以OAB的面积S|AB|d.6直线yx1被抛物线y24x截得的线段的中点坐标是_解析:将yx1代入y24x,整理,得x26x10.由根与系数的关系,得x1x26,3,2.所求点的坐标为(3,2)答案:(3,2)7已知A(2,0),B为抛物线y2x上的一点,则|AB|的最小值为_解析:设点B(x,y),则xy20,所以|AB|.所以当x时,|AB|取得最小值,且|AB|min.答案:8已知AB是抛物线2x2y的焦点弦,若|AB|4,则AB的中点的纵坐标为_解析:设AB的中点为P(x0,y0),分别过A,P,B三点作准线的垂线,垂足分别为A,Q,B.由题意得|AA|BB|AB|4,|PQ|2.又|PQ|y0,所以y02,解得y0.答案:9已知抛物线的焦点F在x轴上,直线l过F且垂直于x轴,l与抛物线交于A,B两点,O为坐标原点,若OAB的面积等于4,求此抛物线的标准方程解:由题意,可设抛物线方程为y22ax(a0),则焦点F,直线l:x,A,B两点坐标分别为,|AB|2|a|.OAB的面积为4,2|a|4,a2.抛物线方程为y24x.10已知抛物线C:y22px(p0)过点A(2,4)(1)求抛物线C的方程,并求其准线方程;(2)若点B(0,2),求过点B且与抛物线C有且仅有一个公共点的直线l的方程解:(1)由抛物线C:y22px(p0)过点A(2,4),可得164p,解得p4.所以抛物线C的方程为y28x,其准线方程为x2.(2)当直线l的斜率不存在时,x0符合题意当直线l的斜率为0时,y2符合题意当直线l的斜率存在且不为0时,设直线l的方程为ykx2.由得ky28y160.由6464k0,得k1,故直线l的方程为yx2,即xy20.综上直线l的方程为x0或y2或xy20.层级二应试能力达标1过点(2,4)作直线l,与抛物线y28x只有一个公共点,这样的直线l有()A1条B2条C3条 D4条解析:选B可知点(2,4)在抛物线y28x上,过点(2,4)与抛物线y28x只有一个公共点的直线有两条,一条是抛物线的切线,另一条与抛物线的对称轴平行2过抛物线y24x的焦点,作一条直线与抛物线交于A,B两点,若它们的横坐标之和等于5,则这样的直线()A有且仅有一条 B有两条C有无穷多条 D不存在解析:选B设A(x1,y1),B(x2,y2),由抛物线的定义,知|AB|x1x2p527.又直线AB过焦点且垂直于x轴的直线被抛物线截得的弦长最短,且|AB|min2p4,所以这样的直线有两条故选B.3已知抛物线y22px(p0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为()Ax1 Bx1Cx2 Dx2解析:选B易知抛物线的焦点为F,所以过焦点且斜率为1的直线的方程为yx,即xy,代入y22px得y22p2pyp2,即y22pyp20,由根与系数的关系得p2(y1,y2分别为点A,B的纵坐标),所以抛物线的方程为y24x,准线方程为x1.4已知抛物线C:y28x与点M(2,2),过C的焦点且斜率为k的直线与C交于A,B两点,若0,则k()A. B.C. D2解析:选D由题意可知抛物线C的焦点坐标为(2,0),则直线AB的方程为yk(x2),将其代入y28x,得k2x24(k22)x4k20.设A(x1,y1),B(x2,y2),则由0,(x12,y12)(x22,y22)0.(x12)(x22)(y12)(y22)0,即x1x22(x1x2)4y1y22(y1y2)40.由解得k2.故选D项5已知抛物线y2x,则弦长为定值1的焦点弦有_条解析:因为通径的长2p为焦点弦长的最小值,所以给定弦长a,若a2p,则焦点弦存在两条;若a2p,则焦点弦存在一条;若a,所以弦长为定值1的焦点弦有2条答案:26直线yx3与抛物线y24x交于A,B两点,过A,B两点向抛物线的准线作垂线,垂足分别为P,Q,则梯形APQB的面积为_解析:由消去y得x210x90,得x1或9,即或所以|AP|10,|BQ|2或|BQ|10,|AP|2,所以|PQ|8,所以梯形APQB的面积S848.答案:487设点P(x,y)(y0)为平面直角坐标系xOy内的一个动点(其中O为坐标原点),点P到定点M的距离比点P到x轴的距离大.(1)求点P的轨迹方程;(2)若直线l:ykx1与点P的轨迹相交于A,B两点,且|AB|2,求实数k的值解:(1)过点P作x轴的垂线且垂足为点N,则|PN|y,由题意知|PM|PN|, y,化简得x22y.故点P的轨迹方程为x22y.(2)由题意设A(x1,y1),B(x2,y2),联立消去y化简得x22kx20,x1x22k,x1x22.|AB|2,k43k240,又k20,k21,k1.8已知抛物线C:y22px(p0)的焦点为F,直线y4与y轴的交点为P,与C的交点为Q,且|QF|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程解:(1)设Q(x0,4),代入y22px得x0.所以|PQ|,|QF|x0.由题设得,解得p2(舍去)或p2.所以C的方程为y24x.(2)依题意知l与坐标轴不垂直,故可设l的方程为xmy1(m0)代入y24x得y24my40.设A(x1,y1),B(x2,y2),则y1y24m,y1y24.故AB的中点为D(2m21,2m),|AB|y1y2|4(m21)又l的斜率为m,所以l的方程为xy2m23.将上式代入y24x,并整理得y2y4(2m23)0.设M(x3,y3),N(x4,y4),则y3y4,y3y44(2m23)故MN的中点为E,|MN|y3y4| .由于MN垂直平分AB,故A,M,B,N四点在同一圆上等价于|AE|BE|MN|,从而|AB|2|DE|2|MN|2,即4(m21)222.化简得m210,解得m1或m1.所求直线l的方程为xy10或xy10. (时间120分钟满分150分)一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1(2017浙江高考)椭圆1的离心率是()A.B.C. D.解析:选B根据题意知,a3,b2,则c,椭圆的离心率e.2是任意实数,则方程x2y2sin 4的曲线不可能是()A椭圆 B双曲线C抛物线 D圆解析:选C由于R,对sin 的值举例代入判断sin 可以等于1,这时曲线表示圆,sin 可以小于0,这时曲线表示双曲线,sin 可以大于0且小于1,这时曲线表示椭圆3设椭圆1(ab0)的左、右焦点分别为F1,F2,上顶点为B.若|BF2|F1F2|2,则该椭圆的方程为()A.1 B.y21C.y21 D.y21解析:选A|BF2|F1F2|2,a2c2,a2,c1,b.椭圆的方程为1.4已知双曲线C:1(a0,b0)的离心率为,则C的渐近线方程为()Ayx ByxCyx Dyx解析:选Ce21,则C的渐近线方程为yx.5设P是双曲线1(a0)上一点,双曲线的一条渐近线方程为3x2y0,F1,F2分别是双曲线的左、右焦点,若|PF1|3,则|PF2|()A1或5 B6C7 D8解析:选C双曲线1的一条渐近线方程为3x2y0,故a2.又P是双曲线上一点,故|PF1|PF2|4,而|PF1|3,则|PF2|7.6已知直线ykxk(k为实数)及抛物线y22px(p0),则()A直线与抛物线有一个公共点B直线与抛物线有两个公共点C直线与抛物线有一个或两个公共点D直线与抛物线没有公共点解析:选C因为直线ykxk恒过点(1,0),点(1,0)在抛物线y22px的内部,所以当k0时,直线与抛物线有一个公共点,当k0时,直线与抛物线有两个公共点7已知双曲线1(b0)的左、右焦点分别是F1,F2,其一条渐近线方程为yx,点P(,y0)在双曲线上,则()A12 B2C0 D4解析:选C由渐近线方程为yx,知双曲线是等轴双曲线,双曲线方程是x2y22,于是两焦点分别是F1(2,0)和F2(2,0),且P(,1)或P(,1)不妨取点P(,1),则(2,1),(2,1)(2,1)(2,1)(2)(2)10.8设双曲线C:y21(a0)与直线l:xy1相交于两个不同的点,则双曲线C的离心率e的取值范围为()A. B(,)C. D.(,)解析:选D由消去y并整理得(1a2)x22a2x2a20.由于直线与双曲线相交于两个不同的点,则1a20a21,且此时4a2(2a2)0a20),则抛物线过点(40,30),从而有3022p40,即2p,所以所求抛物线方程为y2x.虽然选项中没有y2x,但C中的2p符合题意11.我们把离心率为黄金分割系数的椭圆称为“黄金椭圆”如图,“黄金椭圆”C的中心在坐标原点,F为左焦点,A,B分别为长轴和短轴上的顶点,则ABF()A90 B60C45 D30解析:选A设椭圆的方程为1(ab0)由已知,得A(a,0),B(0,b),F(c,0),则(c,b),(a,b)离心率e,ca,ba,b2ac0,ABF90.12已知直线yk(x2)(k0)与抛物线C:y28x相交于A,B两点,F为C的焦点,若|FA|2|FB|,则k()A. B.C. D.解析:选D将yk(x2)代入y28x,得k2x2(4k28)x4k20,设A(x1,y1), B(x2,y2),则x1x2,x1x24,抛物线y28x的准线方程为x2,由|FA|2|FB|及抛物线定义得x122(x22),即x122x2,代入x1x24,整理得xx220,解得x21或x22(舍去)所以x14,5,解得k2,又因为k0,所以k.二、填空题(本大题共4小题,每小题5分,共20分请把正确答案填在题中的横线上)13以双曲线1的焦点为顶点,顶点为焦点的椭圆方程为_解析:双曲线焦点(4,0),顶点(2,0),故椭圆的焦点为(2,0),顶点(4,0)答案:114已知双曲线1(a0,b0)的一个焦点与抛物线xy2的焦点重合,且双曲线的离心率等于,则该双曲线的方程为_解析:抛物线xy2的方程化为标准形式为y24x,焦点坐标为(1,0),则得a2b21,又e,易求得a2,b2,所以该双曲线的方程为5x2y21.答案:5x2y2115已知二次曲线1,当m2,1时,该曲线的离心率的取值范围是_解析:m2,1,曲线方程化为1,曲线为双曲线,e.m2,1,e.答案:,16设F1,F2分别是椭圆1的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则|PM|PF1|的最大值为_解析:由椭圆的定义知|PF1|PF2|10,|PF1|10|PF2|,|PM|PF1|10|PM|PF2|,易知M点在椭圆外,连接MF2并延长交椭圆于点P,此时|PM|PF2|取最大值|MF2|,故|PM|PF1|的最大值为10|MF2|1015.答案:15三、解答题(本大题共6小题,共70分解答时应写出必要的文字说明、证明过程或演算步骤)17(本小题满分10分)已知抛物线的顶点在原点,它的准线过双曲线1(a0,b0)的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交于点P,求抛物线的方程和双曲线的方程解:依题意,设抛物线的方程为y22px(p0),点P在抛物线上,62p.p2,所求抛物线的方程为y24x.双曲线的左焦点在抛物线的准线x1上,c1,即a2b21,又点P在双曲线上,1,解方程组得或(舍去)所求双曲线的方程为4x2y21.18(本小题满分12分)已知椭圆1及直线l:yxm,(1)当直线l与该椭圆有公共点时,求实数m的取值范围;(2)求直线l被此椭圆截得的弦长的最大值解:(1)由消去y,并整理得9x26mx2m2180.36m236(2m218)36(m218)直线l与椭圆有公共点,0,据此可解得3 m3 .故所求实数m的取值范围为3 ,3 (2)设直线l与椭圆的交点为A(x1,y1),B(x2,y2),由得:x1x2,x1x2,故|AB| ,当m0时,直线l被椭圆截得的弦长的最大值为.19(本小题满分12分)双曲线x21(b0)的左、右焦点分别为F1,F2,直线l过F2且与双曲线交于A,B两点(1)若直线l的倾斜角为,F1AB是等边三角形,求双曲线的渐近线方程;(2)设b,若直线l的斜率存在,且()0,求l的斜率解:(1)设A(xA,yA)由题意得F2(c,0),c,yb2(c21)b4,因为F1AB是等边三角形,所以2c|yA|,即4(1b2)3b4,解得b22.故双曲线的渐近线方程为yx.(2)由题意知F1(2,0),F2(2,0)设A(x1,y1),B(x2,y2),直线l:yk(x2),显然k0.由得(k23)x24k2x4k230.因为l与双曲线交于两点,所以k230,且36(1k2)0.设AB的中点为M(xM,yM)由()0即0,知F1MAB,故kF1Mk1.而xM,yMk(xM2),kF1M,所以k1,解得k2,故l的斜率为.20(本小题满分12分)已知动圆C过定点F(0,1),且与直线l1:y1相切,圆心C的轨迹为E.(1)求动点C的轨迹E的方程;(2)已知直线l2交轨迹E于两点P,Q,且PQ中点的纵坐标为2,求|PQ|的最大值解:(1)由题设知点C到点F的距离等于它到l1的距离,所以点C的轨迹是以F为焦点,l1为准线的抛物线,所以所求轨迹的方程为x24y.(2)由题意易知直线l2的斜率存在,又抛物线方程为x24y,当直线l2的斜率为0时,|PQ|4.当直线l2的斜率k不为0时,设中点坐标为(t,2),P(x1,y1),Q(x2,y2),则有x4y1,x4y2,两式作差得xx4(y1y2),即得k,则直线方程为y2(xt),与x24y联立得x22tx2t280.由根与系数的关系得x1x22t,x1x22t28,则|PQ|6,当且仅当t时取

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论