




已阅读5页,还剩50页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1知识与技能 了解导函数的概念,理解导数的几何意义 2过程与方法 会求导函数,根据导数的几何意义,会求曲线上某点处的切线方程,本节重点:导数的几何意义 本节难点:对导数几何意义的理解 1正确理解曲线的切线的定义,即:过曲线yf(x)上一点P作曲线的割线PQ,当Q点沿着曲线无限趋近于P时,若割线PQ趋近于某一确定的直线PT,则这一确定的直线PT称为曲线yf(x)在点P的切线 2“函数f(x)在点x0处的导数”、“导函数”、“导数”三者之间的区别与联系 (1)“函数在一点处的导数”,就是在该点的函数的改变量与自变量的改变量的比的极限,它是一个数值,不是变数,(3)导函数也简称导数,所以 (4)函数yf(x)在点x0处的导数f(x0)就是导函数f(x)在点xx0处的函数值f(x0)f(x)|xx0.,1已知曲线的切点P(x0,y0),求曲线的切线方程的步骤: (1)求出函数yf(x)在点x0处的导数f(x0); (2)根据直线的点斜式方程,得切线方程为yy0f(x0)(xx0); (3)若曲线yf(x)在点P(x0,y0)处的导数不存在,就是切线与y轴平行或不存在;f(x0)0,切线与x轴正向夹角为锐角;f(x0)0,切线与x轴正向夹角为钝角;f(x0)0,切线与x轴平行,注意:只有曲线方程可看成函数解析式时才能利用导数来求切线方程,否则不能利用导数来求,如求过圆上某点的切线方程就不能直接利用导数来求,2过曲线外的点P(x1,y1),求曲线的切线方程的步骤: (1)设切点为(x0,y0),求出切点坐标; (2)求出函数yf(x)在点x0处的导数f(x0); (3)根据直线的点斜式方程,得切线方程为yy0f(x0)(xx0),切线,导数的几何意义 函数yf(x)在点x0处的导数的几何意义是曲线yf(x)在点P(x0,f(x0)处的切线的 也就是说,曲线yf(x)在点P(x0,f(x0)处的切线的斜率是 相应地,切线方程为 2函数的导数,斜率,f(x0),yf(x0)f(x0)(xx0),例1 过曲线yf(x)x3上两点P(1,1)和Q(1x,1y)作曲线的割线,求出当x0.1时割线的斜率 解析 ff(1x)f(1)(1x)31 x33x23x,,(1)求曲线C上的横坐标为2的点处的切线方程; (2)第(1)小题中的切线与曲线C是否还有其他的公共点? 分析 解答本题可先求出切点坐标及斜率,再利用直线方程的点斜式形式求切线方程,解析 (1)将x2代入曲线C的方程得y4, 切点P(2,4),解得x12,x24. 从而求得公共点为P(2,4)或M(4,20) 即切线与曲线C的公共点除了切点外,还有另外的公共点 点评 求曲线的切线要注意“过点P的切线”与“在P点处的切线”的差异:过点P的切线中,点P不一定是切点,点P也不一定在曲线上;而在点P处的切线,点P必为切点,已知曲线y2x3上一点A(1,2),则点A处的切线斜率等于 ( ) A2 B4 C66x2 D6 答案 D 解析 y2x3,,例3 抛物线yx2在点P处的切线与直线2xy40平行,求P点的坐标及切线方程 分析 解答本题可先设切点坐标再利用切线斜率及切点在抛物线上列方程组求解,得y|xx02x0. 又由切线与直线2xy40平行,得2x02,x01. P(1,y0)在yx2上,y01. 点P的坐标为(1,1),切线方程为y12(x1),即2xy10. 点评 解决切线问题的关键是求出切点坐标求切点坐标往往利用切点既在曲线上又在切线上及切点处的导数值,即为切线斜率这些条件来构造方程组求解,若抛物线yx2与直线2xym0相切,求m. 解析 设切点为P(x0,y0),由本例知,y|xx02x0.,例4 若抛物线y4x2上的点P到直线y4x5的距离最短,求点P的坐标 分析 抛物线上到直线y4x5的距离最短的点,是平移该直线与抛物线相切时的切点解答本题可先求导函数,再求P点的坐标,解析 由点P到直线y4x5的距离最短知,过点P的切线方程与直线y4x5平行设P(x0,y0),则,点评 求最值问题的基本思路:(1)目标函数法:通过设变量构造目标函数,利用函数求最值;(2)数形结合法:根据问题的几何意义,利用图形的特殊位置求最值,求抛物线y4x2上的点到直线y4x5的距离的最小值 解析 解法一:由例题解析知最短距离为,例5 曲线yx3在x00处的切线是否存在,若存在,求出切线的斜率和切线方程;若不存在,请说明理由,点评 (1)yx3在点(0,0)处的切线是x轴,符合切线定义这似乎与学过的切线知识有所不同,其实不然,直线与曲线有两个公共点时,在其中一点也可能相切如图所示,A4xy90或4xy250 B4xy10 C4xy90或4xy250 D以上都不对 答案 C,即直线l的斜率为4. 故经过(1,4)的曲线的切线方程为 y44(x1),即4xy80. 设直线l的方程为4xyc0.,例6 试求过点M(1,1)且与曲线yx31相切的直线方程,辨析 上述解法错在将点(1,1)当成了曲线yx31上的点因此在求过某点的切线时,一定要先判断点是否在曲线上,再据不同情况求解,一、选择题 1曲线y2x21在点(0,1)处的切线的斜率是( ) A4 B0 C4 D不存在 答案 B,答案 B,3若曲线yh(x)在点P(a,h(a)处的切线方程为2xy10,那么 ( ) Ah(a)0 Bh(a)0 Dh(a)不确定 答案 B 解析 由导数的几何意义,得h(a)k20.,4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广安2025年上半年广安市邻水县“小平故里英才”引进急需紧缺专业人才笔试历年参考题库附带答案详解
- 北京2025年民族团结杂志社公开招聘9人笔试历年参考题库附带答案详解
- 2025福建南平市中昱设计咨询有限公司招聘27人笔试参考题库附带答案详解
- 山西林业职业技术学院《中级财务管理》2023-2024学年第二学期期末试卷
- 厦门城市职业学院《EP系统原理与应用》2023-2024学年第二学期期末试卷
- 山东外事职业大学《电视画面编辑》2023-2024学年第二学期期末试卷
- 贵州航天职业技术学院《会计英语》2023-2024学年第二学期期末试卷
- 赤峰应用技术职业学院《食品原料安全控制(实验)》2023-2024学年第二学期期末试卷
- 哈尔滨信息工程学院《信息系统研究》2023-2024学年第二学期期末试卷
- 柳州铁道职业技术学院《铸造工艺学》2023-2024学年第二学期期末试卷
- 自考《03203外科护理学》考试题库大全-下(多选题)
- 精装房营销策略研究-全面剖析
- 融资融券基本管理制度
- 公路工程质量试题及答案
- 中央贸促会面试题及答案
- 产业链购销合同
- 昇腾DeepSeek解决方案
- 出口美国合同范本
- 2025-2030中国香紫苏醇市场发展形势及未来投资风险预警研究报告
- 2024年市场营销师品牌宣传技巧试题及答案
- 教育机构与旅行社合作合同新规定
评论
0/150
提交评论