高等数学反常积分同济.ppt_第1页
高等数学反常积分同济.ppt_第2页
高等数学反常积分同济.ppt_第3页
高等数学反常积分同济.ppt_第4页
高等数学反常积分同济.ppt_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,二、无界函数的反常积分,第四节,常义积分,积分限有限,被积函数有界,推广,一、无穷限的反常积分,机动 目录 上页 下页 返回 结束,反常积分,(广义积分),反常积分,第五章,一、无穷限的反常积分,引例. 曲线,和直线,及 x 轴所围成的开口曲,边梯形的面积,可记作,其含义可理解为,机动 目录 上页 下页 返回 结束,1、定义1:,以上每个极限都存在,则其对应的积分收敛,否则发散。,机动 目录 上页 下页 返回 结束,引入记号,2. 广义的 Newton Leibniz 公式:,机动 目录 上页 下页 返回 结束,例1. 计算反常积分,解:,机动 目录 上页 下页 返回 结束,思考:,分析:,原积分发散 !,注意: 对反常积分, 只有在收敛的条件下才能使用,“奇偶函数积分” 的性质,否则会出现错误 .,例2. 证明第一类 p 积分,证:当 p =1 时有,当 p 1 时有,当 p 1 时收敛 ; p1,时发散 .,因此, 当 p 1 时, 反常积分收敛 , 其值为,当 p1 时, 反常积分发散 .,机动 目录 上页 下页 返回 结束,例3. 计算反常积分,解:,机动 目录 上页 下页 返回 结束,作业:P260 1 (2) , (3) , (4) , (5) , (6),二、无界函数的反常积分,引例:曲线,所围成的,与 x 轴, y 轴和直线,开口曲边梯形的面积,可记作,其含义可理解为,机动 目录 上页 下页 返回 结束,1、定义2:无界点称为瑕点,以上每个极限都存在,则其对应的积分收敛,否则发散。,机动 目录 上页 下页 返回 结束,a 点为瑕点,b 点为瑕点,a , b点为瑕点,c 点为瑕点, 若瑕点, 若 b 为瑕点, 若 a 为瑕点, 若 a , b 都为瑕点,不可抵消!,机动 目录 上页 下页 返回 结束,2. 广义的 Newton Leibniz 公式:,若被积函数在积分区间上仅存在有限个第一类,说明:,例如,间断点,而不是反常积分.,则本质上是常义积分,下述解法是否正确:, 积分收敛,例4. 计算反常积分,解: 显然瑕点为 a , 所以,原式,机动 目录 上页 下页 返回 结束,例5. 讨论反常积分,的收敛性 .,解:,所以反常积分,发散 .,例6. 证明反常积分,证: 当 q = 1 时,当 q 1 时收敛 ; q1,时发散 .,当 q1 时,所以当 q 1 时, 该广义积分收敛 , 其值为,当 q 1 时, 该广义积分发散 .,机动 目录 上页 下页 返回 结束,内容小结,1. 反常积分,积分区间无限,被积函数无界,常义积分的极限,2. 两个重要的反常积分,机动 目录 上页 下页 返回 结束,说明: (1) 有时通过换元 , 反常积分和常义积分可以互,相转化 .,例如 ,(2) 当一题同时含两类反常积分时,机动 目录 上页 下页 返回 结束,应划分积分区间,分别讨论每一区间上的反常积分.,第五节 目录 上页 下页 返回 结束,提示: P260 题2,求其最大值 .,作业:P260 1 (2) , (3) , (4) , (5) , (6) (9) (10) 2(选作),3 (选作),补充题 1. 试证, 并求其值 .,解:,令,机动 目录 上页 下

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论