




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2.2对数函数(二)学习目标1.掌握对数型复合函数单调区间的求法及单调性的判定方法.2.掌握对数型复合函数奇偶性的判定方法.3.会解简单的对数不等式知识点一ylogaf(x)型函数的单调区间思考我们知道y2f(x)的单调性与yf(x)的单调性相同,那么ylog2f(x)的单调区间与yf(x)的单调区间相同吗?梳理一般地,形如函数f(x)logag(x)的单调区间的求法:(1)先求g(x)0的解集(也就是函数的定义域);(2)当底数a大于1时, g(x)0限制之下g(x)的单调增区间是f(x)的单调增区间,g(x)0限制之下g(x)的单调减区间是f(x)的单调减区间;(3)当底数a大于0且小于1时,g(x)0限制之下g(x)的单调区间与f(x)的单调区间正好相反知识点二对数不等式的解法思考log2xlog23等价于x3吗?梳理对数不等式的常见类型当a1时,logaf(x)logag(x)当0a1时,logaf(x)logag(x)知识点三不同底的对数函数图象的相对位置思考ylog2x与ylog3x同为(0,)上的增函数,都过点(1,0),怎样区分它们在同一坐标系内的相对位置?梳理一般地,对于底数a1的对数函数,在(1,)区间内,底数越大越靠近x轴;对于底数0a1,则ylogaf(x)的单调性与yf(x)的单调性相同,若0a1,则ylogaf(x)的单调性与yf(x)的单调性相反另外应注意单调区间必须包含于原函数的定义域跟踪训练2若函数f(x)loga(6ax)在0,2上为减函数,则a的取值范围是()A(0,1) B(1,3)C(1,3 D3,)类型二对数型复合函数的奇偶性例3判断函数f(x)ln 的奇偶性引申探究若已知f(x)ln为奇函数,则正数a,b应满足什么条件?反思与感悟(1)指数函数、对数函数都是非奇非偶函数,但并不妨碍它们与其他函数复合成奇函数(或偶函数)(2)含对数式的奇偶性判断,一般用f(x)f(x)0来判断,运算相对简单跟踪训练3判断函数f(x)lg(x)的奇偶性类型三对数不等式例4已知函数f(x)loga(1ax)(a0,且a1)解关于x的不等式:loga(1ax)f(1)反思与感悟对数不等式解法要点(1)化为同底logaf(x)logag(x);(2)根据a1或0a1去掉对数符号,注意不等号方向;(3)加上使对数式有意义的约束条件f(x)0且g(x)0.跟踪训练4已知Ax|log2x2,Bx|3x,则AB等于()A. B(0,)C. D(1,)1.如图所示,曲线是对数函数f(x)logax的图象,已知a取,则对应于C1,C2,C3,C4的a值依次为()A., B.,C., D.,2如果logxlogy0,那么()Ayx1 Bxy1C1xy D1y0,且a1)中,底数a对其图象的影响:无论a取何值,对数函数ylogax(a0,且a1)的图象均过点(1,0),且由定义域的限制,函数图象穿过点(1,0)落在第一、四象限,随着a的逐渐增大,ylogax(a1,且a1)的图象绕(1,0)点在第一象限由左向右顺时针排列,且当0a1时函数单调递增答案精析问题导学知识点一思考ylog2f(x)与yf(x)的单调区间不一定相同,因为ylog2f(x)的定义域与yf(x)定义域不一定相同知识点二思考不等价log2xlog23成立的前提是log2x有意义,即x0,log2xlog230x3.知识点三思考可以通过描点定位,也可令y1,对应x值即底数题型探究例1解设tx22x1,则t(x1)22.ylogt为减函数,且00的x的取值范围,由函数yx22x1的图象知,1x0,x22x0,0x2.当0x2时,yx22x(x22x)(0,1,log (x22x)log10.函数ylog(x22x)的值域为0,)(2)设ux22x(0x2),vlogu,函数ux22x在(0,1)上是增函数,在(1,2)上是减函数,vlogu是减函数,由复合函数的单调性得到函数f(x)log(x22x)在(0,1)上是减函数,在(1,2)上是增函数例2解令g(x)x2axa,g(x)在上是减函数,00,x(,)恒成立,即2a2(1),故所求a的取值范围是2,2(1)跟踪训练2B例3解由0可得2x0得bx0可得xR,f(x)f(x)lg(x)lg(x)lg(x)(x)lg(1x2x2)0.所以f(x)f(x),所以函数f(x)lg(x)是奇函数例4解f(x)log
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江国企招聘2025宁波宁海传媒集团下属公司招聘7人笔试参考题库附带答案详解
- 菏泽2025年菏泽市市直事业单位引进87名高层次急需紧缺人才笔试历年参考题库附带答案详解
- 信阳师范大学《工程机械液压传动》2023-2024学年第二学期期末试卷
- 宿迁泽达职业技术学院《炎黄服饰文化产品设计》2023-2024学年第二学期期末试卷
- 安徽邮电职业技术学院《场馆经营与管理》2023-2024学年第二学期期末试卷
- 河北资源环境职业技术学院《工商行政管理》2023-2024学年第二学期期末试卷
- 贵州体育职业学院《工科大学化学-物理化学(一)》2023-2024学年第二学期期末试卷
- 北京理工大学珠海学院《数字取证技术》2023-2024学年第二学期期末试卷
- 眉山药科职业学院《冲压工艺与模具设计》2023-2024学年第二学期期末试卷
- 湖北黄冈应急管理职业技术学院《预测与决策》2023-2024学年第二学期期末试卷
- 民法典知识题库110题(含答案)
- 小学数学小升初小升初专题复习小升初专题复习
- GB/T 4942.1-2001旋转电机外壳防护分级(IP代码)
- GB/T 24675.2-2009保护性耕作机械深松机
- GB/T 224-2008钢的脱碳层深度测定法
- 中等职业学校艺术课程标准(2020年版)(word精排版)
- GB/T 1355-2021小麦粉
- 无人机结构与系统-第1章-无人机结构与飞行原理课件
- (完整)中小学教师高级职称专业水平能力试题库及答案(通用版)
- 2023年STD温盐深剖面仪行业分析报告及未来五至十年行业发展报告
- 护理管理中的组织沟通课件
评论
0/150
提交评论