




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学文化与数学史复习Lecture 0为什么要开设数学史1. 介绍文艺复兴时期意大利艺术大师达芬奇(L. Da Vinci, 14521519)和 19 世纪英国业 余数学家伯里加尔(H. Perigal, 18011898)证明勾股定理的方法。达芬奇H. Perigal的水车翼轮法2. 谈谈你对数学史教育价值的认识。一门学科 一座桥梁一条进路一种资源 一组专题对学生来讲,通过对数学史的学习,有利于学生对数学知识的掌握和数学能力的提高,它不仅使学生获得了一种历史感,而且,通过从新的角度看数学学科,他们将对数学产生更敏锐的理解力和鉴赏力,有利于学生对数学的思考, 促进学生的数学理解,启发学生的人格成长,有利于激发学生的情感、兴趣和良好的学习态度,有利于辩证唯物主义世界观的形成, 有利于学生了解数学的应用价值和文化价值。对于教师来讲,要使个体知识的发生遵循人类知识的发生过程,那么数学史就成为了数学教学的有效工具。将数学史作为一种资源运用到教学中,给教学提供一种新的视角,发挥其启发和借鉴的作用,并丰富课堂教学,使教学活动变得自然而有趣。这对数学教育改革也具有极其重要的意义。Lecture 2古代数学(I):埃及3. Rhind 纸草书问题 79 是一个等比数列求和问题,介绍其中蕴涵的等比数数列求和方法。 4. “埃及几何学中的珍宝”是什么?正四棱台体积公式: Lecture 3古代数学(II):美索不达米亚3. 研究古巴比伦时期的泥版 BM 15285。设想你是一位祭司,你会提出什么数学问题?5 古代巴比伦人是如何求平方根近似值的? 7. 美国哥伦比亚大学收藏的 Plimpton 322 号巴比伦泥版的内容是什么?泥版上有15行、4列数字,原来人们还以为是一份帐目。但是,奥地利著名数学史家诺伊格鲍尔(O. Neugebauer, 18991990)经过研究惊奇地发现:第3列数与第2列数的平方差竟都是平方数(少数行不满足这一规律,但显然是抄写错误所致)!例如(见下表,表中数字均为60进制):,等等这就表明,它是一张勾股数表。英国著名数学家齐曼(C. Zeeman, 1925)指出,如果巴比伦人使用了勾股数一般公式,那么,满足,且(是勾所对的角)为有限小数的勾股数只有16组。而Plimpton 322号泥版给出了其中的15组!其水平之高,令人惊叹不已。6 古巴比伦时期的泥版 Str.362 上记载了如下问题:“十兄弟分银迈纳,每个兄弟均比相邻的弟弟多得若干,已知老八分得 6 斤(1 迈纳60 斤)。问:各兄弟比相邻的弟弟多得 几何?”泥版上给出的解法是:“取十兄弟所得平均数 10 斤,倍之,得 20 斤;减去老八所得的两倍即 12 斤,得 8 斤。于是,公差为8/5斤。”用我们今天的代数符号来表达这一解法,并写出一般公式。Lecture 4古代数学(III):中国14 用出入相补原理证明勾股定理。 16 介绍西汉时期的“日高公式”。南宋数学家杨辉是如何推导这个公式的?日高公式:杨辉推导日高公式:如图所示,图中两个黄色的面积是相等的。 as2s1dH根据上面的原理我们可得:(其中d为两个杆子的距离)19 试述刘徽和祖暅的球体积工作。为了证明公式不正确,刘徽在立方体内作两个相互垂直的内切圆柱,并把公共部分立体称作“牟合方盖”。如下图 两个圆柱面的公共部分(牟合方盖)正好把半径为R的球体包含在内。刘徽想若用一个与底面平行的平面去截它们,那么球的截面肯定是圆,而牟合方盖的截面刚好是一个正方形 。如右图正方形与其内切圆的面积之比都是:由“截面原理”可得:于是我们只要求出牟合方盖的体积即可求出球的体积。刘徽:提出从立方体割出牟合方盖之后所余的“外棋”着手。但是外棋的复杂难倒了刘徽。祖暅:对边长为D的正方体及其内牟合方盖的八分之一进行考察如右图并将其分解为一个内棋和三个外棋内棋外棋外棋外棋祖暅公理:用平行于底面的平面去截两个等高的立体,如果所得的两个截面面积处处相等,则这两个立体的体积就相等。13. 在直角三角形中,勾、股、弦分别为 a、b、c,已知勾弦差(c-a)和股弦差(c-b),试用中国古代的方法来证明下面一组公式:, ,则有:此图是将边长分别为a,b,c的三个正方形合在一起的14. 简要介绍刘徽的割圆术。(要求写出相关公式)圆内接正多边形边长递推公式:Lecture 5 古希腊数学21 描述希皮亚斯(Hippias, 公元前 5 世纪)的割圆曲线,并用利用它来三等分角。17. 用欧几里得的方法证明勾股定理。得证23. 用欧几里得的方法证明命题:“素数无限多”。答:假设素数个数有限,则必有一个最大的设最大的素数是P令n=2*3*5*7*P+1,即把所有的素数相乘并加上1,显然nP若因为P是最大素数,所以n是合数,则n能被2,3,P中至少一个素数整除,但用这些数去除n,都有余数1,即都不能整除这就有两种可能(1)n是素数 (2)n是合数,但他只能被大于P的素数整除这两种情况都和P是最大素数矛盾。所以假设错误,所以素数是无限27. 如图所示,ADBC 是球 O 被纸面所截得的大圆,AB 和 CD 是其相互垂直的两条直径。 XVWY 是球 O 的外切圆柱(以 AB 为轴)的相应截面。阿基米德通过力学方法发现:球 O 的 体积等于直径为 CD 且垂直于纸面的大圆为底、以 B 为顶点的圆锥 BCD 的体积的 4 倍。试介绍阿基米德的方法。20. 利用托勒密定理推导和角正弦公式。22. 证明海伦三角形面积公式。 Lecture 6 中世纪数学23. 叙述中国剩余定理。37 阿拉伯数学家阿尔卡克希(Al-Karkhi, 953-1029)是如何推导自然数三次幂和公式的?如下图所示:39 斐波纳契计算之书中有如下问题:“棋盘(64 格)上的数列满足:任意一项等于它 前面所有各项和的两倍。已知首项为 1,求棋盘上数列各项之和。”试用今天的方法求解。41. 在约瑟夫问题中,若设排成一圈的人数为 n ,并且从 1 号开始按顺时针方向点数,每
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物业投标保密协议书
- 水泵购销合同协议书
- 离职合同终止协议书
- 白茶代理销售协议书
- 电信入户支付协议书
- 生产加工合伙协议书
- 生猪合伙养殖协议书
- 知识产权合伙协议书
- 离婚债务独立协议书
- 砂石生产托管协议书
- 合伙人协议书模板
- 2025年中考第一次模拟考试卷:生物(成都卷)解析版
- 岁月不负母亲时光留住温情 课件高二下学期母亲节(5月11日)主题班会
- Unit 5 Animals Lesson 3 教学设计-人教精通版三年级英语下册
- 2025年河南空港数字城市开发建设有限公司第一批社会招聘20人笔试参考题库附带答案详解
- 2024年四川公安厅招聘警务辅助人员笔试真题
- 网站联盟广告专题报告
- 广东入团考试试题及答案
- 2025年上半年重庆合川区招考事业单位工作人员易考易错模拟试题(共500题)试卷后附参考答案
- 平安人寿代理合同协议
- 贵州烟草专卖局招聘笔试题库2025
评论
0/150
提交评论