(浙江专用)高考数学板块命题点专练(十三)圆锥曲线(含解析).docx_第1页
(浙江专用)高考数学板块命题点专练(十三)圆锥曲线(含解析).docx_第2页
(浙江专用)高考数学板块命题点专练(十三)圆锥曲线(含解析).docx_第3页
(浙江专用)高考数学板块命题点专练(十三)圆锥曲线(含解析).docx_第4页
(浙江专用)高考数学板块命题点专练(十三)圆锥曲线(含解析).docx_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

板块命题点专练(十三) 圆锥曲线命题点一椭圆1(2018全国卷)已知F1,F2是椭圆C:1(ab0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,PF1F2为等腰三角形,F1F2P120,则C的离心率为()A.B.C. D.解析:选D如图,作PBx轴于点B.由题意可设|F1F2|PF2|2,则c1.由F1F2P120,可得|PB|,|BF2|1,故|AB|a11a2,tan PAB,解得a4,所以e.2(2018浙江高考)已知点P(0,1),椭圆y2m(m1)上两点A,B满足2,则当m_时,点B橫坐标的绝对值最大解析:设A(x1,y1),B(x2,y2),由2,得即x12x2,y132y2.因为点A,B在椭圆上,所以解得y2m,所以xm(32y2)2m2m(m5)244,所以当m5时,点B横坐标的绝对值最大答案:53(2018全国卷)设椭圆C:y21的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0)(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:OMAOMB.解:(1)由已知得F(1,0),l的方程为x1.则点A的坐标为或.又M(2,0),所以直线AM的方程为yx或yx,即xy20或xy20.(2)证明:当l与x轴重合时,OMAOMB0.当l与x轴垂直时,OM为AB的垂直平分线,所以OMAOMB.当l与x轴不重合也不垂直时,设l的方程为yk(x1)(k0),A(x1,y1),B(x2,y2),则x1,x2,直线MA,MB的斜率之和为kMAkMB.由y1kx1k,y2kx2k,得kMAkMB.将yk(x1)代入y21,得(2k21)x24k2x2k220,所以x1x2,x1x2.则2kx1x23k(x1x2)4k0.从而kMAkMB0,故MA,MB的倾斜角互补所以OMAOMB.综上,OMAOMB成立4(2018天津高考)设椭圆1(ab0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A的坐标为(b,0),且|FB|AB|6.(1)求椭圆的方程(2)设直线l:ykx(k0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q,若sinAOQ(O为原点),求k的值解:(1)设椭圆的焦距为2c,由已知有,又由a2b2c2,可得2a3b.由已知可得|FB|a,|AB|b,又|FB|AB|6,可得ab6.联立解得a3,b2.所以椭圆的方程为1.(2)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2)由已知有y1y20,故|PQ|sinAOQy1y2.又因为|AQ|,而OAB,所以|AQ|y2.由sinAOQ,可得5y19y2.由方程组消去x,可得y1 .易知直线AB的方程为xy20,由方程组消去x,可得y2.由5y19y2,可得5(k1)3,两边平方,整理得56k250k110,解得k或k.所以k的值为或.5(2018全国卷)已知斜率为k的直线l与椭圆C:1交于A,B两点,线段AB的中点为M(1,m)(m0)(1)证明:k;(2)设F为C的右焦点,P为C上一点,且0.证明:|,|,|成等差数列,并求该数列的公差解:(1)证明:设A(x1,y1),B(x2,y2),则1,1.两式相减,并由k得k0.由题设知1,m,于是k.由题设得0m,故k.(2)由题意得F(1,0)设P(x3,y3),则(x31,y3)(x11,y1)(x21,y2)(0,0)由(1)及题设得x33(x1x2)1,y3(y1y2)2m0.又点P在C上,所以m,从而P,|,于是| 2.同理|2.所以|4(x1x2)3.故2|,即|,|,|成等差数列设该数列的公差为d,则2|d|x1x2| .将m代入得k1,所以l的方程为yx,代入C的方程,并整理得7x214x0.故x1x22,x1x2,代入解得|d|.所以该数列的公差为或.命题点二双曲线1(2018全国卷)双曲线1(a0,b0)的离心率为,则其渐近线方程为()Ayx ByxCyx Dyx解析:选Ae,a2b23a2,ba.渐近线方程为yx.2(2018全国卷)设F1,F2是双曲线C:1(a0,b0)的左、右焦点,O是坐标原点过F2作C的一条渐近线的垂线,垂足为P.若|PF1|OP|,则C的离心率为()A. B2C. D.解析:选C法一:不妨设一条渐近线的方程为yx,则F2到yx的距离db.在RtF2PO中,|F2O|c,所以|PO|a,所以|PF1|a,又|F1O|c,所以在F1PO与RtF2PO中,根据余弦定理得cosPOF1cosPOF2,即3a2c2(a)20,得3a2c2,所以e.法二:如图,过点F1向OP的反向延长线作垂线,垂足为P,连接PF2,由题意可知,四边形PF1PF2为平行四边形,且PPF2是直角三角形因为|F2P|b,|F2O|c,所以|OP|a.又|PF1|a|F2P|,|PP|2a,所以|F2P|ab,所以ca,所以e.3(2018天津高考)已知双曲线1(a0,b0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1d26,则双曲线的方程为()A.1 B.1C.1 D.1解析:选C法一:如图,不妨设A在B的上方,则A,B.又双曲线的一条渐近线为bxay0,则d1d22b6,所以b3.又由e2,知a2b24a2,所以a.所以双曲线的方程为1.法二:由d1d26,得双曲线的右焦点到渐近线的距离为3,所以b3.因为双曲线1(a0,b0)的离心率为2,所以2,所以4,所以4,解得a23,所以双曲线的方程为1.4(2018全国卷)已知双曲线C:y21,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若OMN为直角三角形,则|MN|()A. B3C2 D4解析:选B法一:由已知得双曲线的两条渐近线方程为yx.设两条渐近线的夹角为2,则有tan ,所以30.所以MON260.又OMN为直角三角形,由于双曲线具有对称性,不妨设MNON,如图所示在RtONF中,|OF|2,则|ON|.在RtOMN中,|MN|ON|tan 2tan 603.法二:因为双曲线y21的渐近线方程为yx,所以MON60.不妨设过点F的直线与直线yx交于点M,由OMN为直角三角形,不妨设OMN90,则MFO60,又直线MN过点F(2,0),所以直线MN的方程为y(x2),由得所以M,所以|OM| ,所以|MN|OM|3.5(2018江苏高考)在平面直角坐标系xOy中,若双曲线1(a0,b0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为_解析:双曲线的渐近线方程为bxay0,焦点F(c,0)到渐近线的距离db,bc,ac,e2.答案:26(2018北京高考)已知椭圆M:1(ab0),双曲线N:1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为_;双曲线N的离心率为_解析:法一:如图,双曲线N的渐近线方程为yx,tan 60,双曲线N的离心率e1满足e14,e12.由得x2.设D点的横坐标为x,由正六边形的性质得|ED|2xc,4x2c2.a2b2,得3a46a2b2b40,320,解得23.椭圆M的离心率e2 1.法二:双曲线N的渐近线方程为yx,tan 60.又c12m,双曲线N的离心率为2.如图,连接EC,由题意知,F,C为椭圆M的两焦点,设正六边形边长为1,则|FC|2c22,即c21.又E为椭圆M上一点,则|EF|EC|2a,即12a,a.椭圆M的离心率为1.答案:12命题点三抛物线1(2017全国卷)已知F为抛物线C:y24x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|DE|的最小值为()A16 B14C12 D10解析:选A抛物线C:y24x的焦点为F(1,0),由题意可知l1,l2的斜率存在且不为0.不妨设直线l1的斜率为k,则l1:yk(x1),l2:y(x1),由消去y,得k2x2(2k24)xk20,设A(x1,y1),B(x2,y2),x1x22,由抛物线的定义可知,|AB|x1x22224.同理得|DE|44k2,|AB|DE|444k2848816,当且仅当k2,即k1时取等号,故|AB|DE|的最小值为16.2(2018全国卷)设抛物线C:y24x的焦点为F,过点(2,0)且斜率为的直线与C交于M,N两点,则()A5 B6C7 D8解析:选D由题意知直线MN的方程为y(x2),联立解得或不妨设M(1,2),N(4,4)抛物线焦点为F(1,0),(0,2),(3,4)03248.3(2018全国卷)已知点M(1,1)和抛物线C:y24x,过C的焦点且斜率为k的直线与C交于A,B两点若AMB90,则k_.解析:法一:设点A(x1,y1),B(x2,y2),则yy4(x1x2),k.设AB中点为M(x0,y0),抛物线的焦点为F,分别过点A,B作准线x1的垂线,垂足分别为A,B,则|MM|AB|(|AF|BF|)(|AA|BB|)M(x0,y0)为AB中点,M为AB的中点,MM平行于x轴,y1y22,k2.法二:由题意知,抛物线的焦点坐标为F(1,0),设直线方程为yk(x1),直线方程与y24x联立,消去y,得k2x2(2k24)xk20.设A(x1,y1),B(x2,y2),则x1x21,x1x2.由M(1,1),得(1x1,1y1),(1x2,1y2)由AMB90,得0,(x11)(x21)(y11)(y21)0,x1x2(x1x2)1y1y2(y1y2)10.又y1y2k(x11)k(x21)k2x1x2(x1x2)1,y1y2k(x1x22),11k2k10,整理得10,解得k2.答案:24.(2018浙江高考)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y24x上存在不同的两点A,B满足PA,PB的中点均在C上(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x21(x0)上的动点,求PAB面积的取值范围解:(1)证明:设P(x0,y0),A,B.因为PA,PB的中点在抛物线上,所以y1,y2为方程24,即y22y0y8x0y0的两个不同的实根所以y1y22y0,因此PM垂直于y轴(2)由(1)可知所以|PM|(yy)x0y3x0,|y1y2|2.因此PAB的面积SPAB|PM|y1y2|(y4x0).因为x1(x00),所以y4x04x4x044,5,所以PAB面积的取值范围是.命题点四圆锥曲线中的综合问题1.(2018江苏高考)如图,在平面直角坐标系xOy中,椭圆C过点,焦点为F1(,0),F2(,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.若直线l与椭圆C有且只有一个公共点,求点P的坐标;直线l与椭圆C交于A,B两点若OAB的面积为,求直线l的方程解:(1)因为椭圆C的焦点为F1(,0),F2(,0),可设椭圆C的方程为1(ab0)又点在椭圆C上,所以解得所以椭圆C的方程为y21.因为圆O的直径为F1F2,所以圆O的方程为x2y23.(2)设直线l与圆O相切于点P(x0,y0)(x00,y00),则xy3,所以直线l的方程为y(xx0)y0,即yx.由消去y,得(4xy)x224x0x364y0.(*)因为直线l与椭圆C有且只有一个公共点,所以(24x0)24(4xy)(364y)48y(x2)0.因为x00,y00,所以x0,y01.所以点P的坐标为(,1)因为OAB的面积为,所以ABOP,从而AB.设A(x1,y1),B(x2,y2),由(*)得x1,2,所以AB2(x1x2)2(y1y2)2.因为xy3,所以AB2,即2x45x1000,解得x(x20舍去),则y,因此点P的坐标为.所以直线l的方程为y,即yx3.2(2018全国卷)设抛物线C:y24x的焦点为F,过F且斜率为k(k0)的直线l与C交于A,B两点,|AB|8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程解:(1)由题意得F(1,0),l的方程为yk(x1)(k0)设A(x1,y1),B(x2,y2),由得k2x2(2k24)xk20.16k2160,故x1x2.所以|AB|AF|BF|(x11)(x21).由题设知8,解得k1或k1(舍去)因此l的方程为yx1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y2(x3),即yx5.设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为(x3)2(y2)216或(x11)2(y6)2144.3(2018北京高考)已知抛物线C:y22px经过点P(1,2),过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(1)求直线l的斜率的取值范围;(2)设O为原点,求证:为定值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论