




文档简介
S adhan a Vol. 31, Part 5, October 2006, pp. 543556. Printed in India Effect of bulk modulus on performance of a hydrostatic transmission control system ALI VOLKAN AKKAYA Yildiz Technical University, Mechanical Engineering Department, 34349, Besiktas, Istanbul, Turkey e-mail: .tr MS received 9 September 2005; revised 20 February 2006 Abstract.In this paper, we examine the performance of PID (proportional integral derivative) and fuzzy controllers on the angular velocity of a hydrostatic transmission system by means of Matlab-Simulink. A very novel aspect is that it includes the analysis of the effect of bulk modulus on system control. Simulation resultsdemonstratesthatbulkmodulusshouldbeconsideredasavariableparameter to obtain a more realistic model. Additionally, a PID controller is insuffi cient in presence of variable bulk modulus, whereas a fuzzy controller provides robust angular velocity control. Keywords.Hydrostatic transmission; bulk modulus; PID (proportional integral derivative); fuzzy controller. 1. Introduction Hydrostatic transmission (HST) systems are widely recognized as an excellent means of power transmission when variable output velocity is required in engineering applications, especially in fi eld of manufacturing, automation and heavy duty vehicles. They offer fast response,maintainprecisevelocityundervaryingloadsandallowimprovedenergyeffi ciency and power variability (Dasgupta 2000; Kugi et al 2000). A basic hydrostatic transmission is an entire hydraulic system. Generally, it contains a variable-displacement pump driven by an induction motor, a fi xed or variable displacement motor, and all required controls in one simple package. By regulating the displacement of the pump and/or motor, a continuously variable velocity can be achieved (Wu et al 2004). Manufacturers and researchers continue to improve the performance and reduce the cost of hydrostatic systems. Especially, modelling and control studies of hydrostatic transmission systemshaveattractedconsiderableattentioninrecentdecades.Somestudiesonthistopiccan be found in the literature (Huhtala 1996; Manring Dasgupta 2000; Kugi et al 2000;Dasguptaetal2005).Variousrotationalvelocitycontrolalgorithmsforhydrostaticsys- temsaredevelopedandappliedbyLennevi Watton 1989). Due to temperature variations and air entrapment, the bulk modulus may vary during the operation of the hydraulic sys- tems (Eryilmaz Tan Prasetiawan 2001). In particular, the bulk modulus ought to be regarded as a source of signifi cant nonlinearity for this type of controller. Thus, the controller has to be very robust to account for such wide variation. Use of knowledge-based systems in process control is increasing, especially in the fi elds of fuzzy control (Tanaka 1996). Unlike classical control methods, the fuzzy controller is designed with linguistic terms to cope with the nonlineari- ties. Therefore, this control method is also applied to judge its capacity to reduce the adverse effect of variable bulk modulus. 3.1 PID control The structure of the PID control algorithm used for the angular velocity control of HST system is given in (17) and (18) below. Ziegler-Nichols method is implemented for tuning control parameters, such as proportional gain (Kp), derivative time constant (d) and integral time constant (i ) (Ogata 1990). After fi ne adjustments, the optimal control parameters are Effect of bulk modulus on performance of a transmission control system549 Figure 3.Simulink model of HST system for PID control. determined for the reference angular velocity. Figure 3 shows the Simulink model of the PID-controlled HST system. uv(t) = Kpe(t) + Kpd de(t) dt + Kp i ? e(t) dt,(17) e(t) = r .(18) 3.2 Fuzzy control Fuzzy logic has come a long way since it was fi rst presented to technical society, when Zadeh (1965) fi rst published his seminal work. Since then, the subject has been the focus of many independent research investigations. The attention currently being paid to fuzzy logic is most likely the result of present popular consumer products employing fuzzy logic. The advantages of this method are its applicability to nonlinear systems, simplicity, good performance and robust character. These days, this method is being applied to engineer- ing control systems such as robot control, fl ight control, motor control and power systems successfully. In fuzzy control, linguistic descriptions of human expertise in controlling a process are represented as fuzzy rules or relations. This knowledge base is used by an inference mecha- nism, in conjunction with some knowledge of the states of the process in order to determine control actions. Unlike the conventional controller, there are three procedures involved in the implementation of a fuzzy controller: fuzzifi cation of inputs, and fuzzy inference based on the knowledge and the defuzzifi cation of the rule-based control signal. The structure of the fuzzy controller is seen in fi gure 4. An applied fuzzy controller needs two input signals. These signals are error (e) and deriva- tive of error (de) respectively. The usual overlapped triangular fuzzy membership functions are used for two input signals (e,de/dt) and the output signal (u). Figure 5 shows the struc- ture of the membership functions of input and output signals. Input signals are transformed at intervals of 1,1 by scaling factors which are Ge and Gde. In the fuzzifi cation process, all input signals are expressed as linguistic values which are: NB negative big, NM negative medium, NS-negative small, ZE-zero, PS-positive small, PM-positive medium, PB-positive big. After input signals are converted to fuzzy linguistic variables, these variables are sent to the inference mechanism to create output signals. 550Ali Volkan Akkaya Figure 4.Structure of a fuzzy controller. Theinferenceprocessconsistsoffortyninerulesdrivenbythelinguisticvaluesoftheinput signals. These fuzzy rules written as a rule base are shown given in table 1. The rule base is developed by heuristics with error in motor angular velocity and derivation of error in this velocity. For instance, one of the possible rules is: IF e = PS and de = NB THAN u = NM. Thisrulecanbeexplainedasinthefollowing:Iftheerrorissmall,angularvelocityofhydraulic motor is around the reference velocity. Signifi cantly big negative value of derivation of error shows that the motor velocity is rapidly approaching the reference position. Consequently, controller output should be negative middle to prevent overshoot and to create a brake effect. Asarule-inferencemethod,theMamdaniMethodisselectedbecauseofitsgeneralacceptance (Tanaka 1996). Defuzzifi cation transforms the control linguistic variables into the exact control output. In defuzzifi cation, the method of centre of gravity is implemented (Tanaka 1996), as u = n ? i=1 WiBi/ n ? i=1 Wi(19) Figure 5. Triangular fuzzy member- shipfunctions,(a)einputsignal,(b)de input signal, (c) u output signals. Effect of bulk modulus on performance of a transmission control system551 Table 1. Rule base for fuzzy control. deeNBNMNSZEPSPMPB NBNBNBNBNMNMNSZE NMNBNBNMNSNSZEPS NSNBNMNSNSZEPSPM ZENMNSNSZEPSPSPM PSNMNSZEPSPSPMPB PMNSZEPSPSPMPBPB PBZEPSPMPMPBPBPB where, u is the output signal of the fuzzy controller, Wi is the degree of the fi ring of the ith rule,Biisthecentroidoftheconsequentfuzzysubsetofithrule.Realvaluesofcontroloutput signal (uv) are determined by the scaling factor of Guv. As a result, the fuzzy controller built-in Fuzzy Logic Toolbox of the Matlab program has been added to the Simulink model of hydrostatic transmission system for simulation analysis (fi gure 6). 4. Simulation results and discussion The validity of the infl uence of bulk modulus dynamics on HST control system has been testedincomputersimulations.Inordertocarryoutsimulation,somephysicalandsimulation parameters corresponding to HST system are taken from work of McCloy Bicentroid of the consequent fuzzy subset of ith rule; HSThydrostatic transmission; Iminertia of hydraulic motor shaft Nms2; kp pump coeffi cient m3/s; km hydraulic motor coeffi cient m3; kmt motor torque coeffi cient m3; kv slope coeffi cient of static characteristic of relief valve m5/Ns; MBmoments resulted from friction force Nm; MImoments resulted from load inertia Nm; Mmhydraulic motor torque Nm; Momoments resulted from machine operation Nm; Psystem pressure Pa; Pvopening pressure value of valve Pa; Qc fl ow rate deal with compressibility m3/s; Qm fl ow rate used in hydraulic motor m3/s; Qp fl ow rate of pump m3/s; Qv passing fl ow rate through relief valve m3/s; uvoutput signal of fuzzy controller; V fl uid volume subjected to pressure effect m3; Wi degree of fi ring of ith fuzzy rule; displacement angle of swashplate ; bulk modulus Pa; mm mechanical effi ciency of hydraulic motor ; vp pump volumetric effi ciency ; vm volumetric effi ciency of motor ; angular velocity of motor 1/s; ?Pmpressure drop in hydraulic motor Pa. 556Ali Volkan Akkaya References Dasgupta K 2000 Analysis of a hydrostatic transmission system using low speed high torque motor. Mech. Mach. Theory 35: 14811499 Dasgupta K, Chattapadhyay A, Mondal S K 2005 Selection of fi re-resistant hydraulic fl uids through system modelling and simulation. Simul. Model. Pract. Theory 13: 120 Eryilmaz B, Wilson B H 2001 Improved tracking control of hydraulic systems. Trans. ASME: J. Dyn. Syst. Meas. Control 123: 457462 Huhtala K 1996 Modelling of hydrostatic transmission steady state, linear and nonlinear models. Acta Polytech. Sci. Me. 123: Jedrzykiewicz Z, Pluta J, Stojek J 1997 Research on the properties of a hydrostatic transmission for different effi ciency models of its elements. Acta Montanistica Slovaca 2: 373380 JedrzykiewiczZ,PlutaJ,StojekJ1998ApplicationoftheMatlab-Simulinkpackageinthesimulation tests on hydrostatic systems. Acta Montanistica Slovaca Rocnik 3: 2936 Kugi A, Schlacher K, Aitzetm uller H, Hirmann G 2000 Modelling and simulation of a hydrostatic transmission with variable-displacement pump. Math. Comput. Simul. 53: 409414 Lee C B, Wu H W 1996 Self-tuning adaptive speed control for hydrostatic transmission systems. Int. J. Comput. Appl. Technol. 9: 1833 Lennevi J, Palmberg J O 1995 Application and implementation of LQ design method for the velocity control of hydrostatic transmissions. Proc. Inst. Mech. Eng., J. Syst. Control Eng. 209: 255268 Manring N D 1997 The effective fl uid bulk modulus within a hydrostatic transmission. Trans. ASME: J. Dyn. Syst. Meas. Control 119: 462466 Manring N D, Luecke G R 1998 Modelling and designing a hydrostatic transmission with a fi xed- displacement motor. Trans. ASME: J. Dyn. Syst. Meas. Control 120: 4549 McCloy D, Martin H R 1980 Control of fl uid power, analysis and design (New York: John Wiley & Sons) Merrit H E 1967 Hydraulic control systems (New York: John Wiley & Sons) Ogata K 1990 Modern control engineering (Englewood Chiffs, NJ: Prentice-Hall) PiotrowskaA2003Thecontroloftherotationalspeedofhydraulicengineinhydrostatictransmission byuseofthemoduleDSP.28thASRSeminar,InstrumentsandControl(Ostrava:VSB-TU)pp.291 297 Prasetiawan
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网咖通风系统优化设计方案
- 水利水电工程节能技术试题及答案
- 亮化设计方案
- 2025年中级经济师考试形式与试题及答案解析
- 2024年水利水电工程现场实习报告写作试题及答案
- 农村电商平台建设与运营合同
- 网络教育平台运营管理规范
- 个体简易劳动协议年
- 人力资源管理实践问题研究
- 航空器结构与力学原理题库
- 统编历史七年级下册(2024版) 第一单元第4课-安史之乱与唐朝衰亡【课件】d
- 《新闻传播学》课件
- Unit 3 The world of Science 大单元教学设计-2023-2024学年高中英语外研版(2019)必修第三册
- 延边大学《物联网技术1》2023-2024学年第二学期期末试卷
- 2025年吉林省延边州事业单位【综合岗】考前冲刺历年高频重点模拟试卷提升(共500题附带答案详解)
- 刷单合同范例
- 2025年中天合创能源有限责任公司招聘笔试参考题库含答案解析
- 第22课 世界多极化与经济全球化 说课稿-2023-2024学年高中历史统编版(2019)必修中外历史纲要下
- 四渡赤水(课件)
- 2025年中国成都市酒店行业市场调研分析及投资战略规划报告
- 《高等光学》课程教学大纲
评论
0/150
提交评论