台北市立阳明高级中学-OpticsonGraph.ppt_第1页
台北市立阳明高级中学-OpticsonGraph.ppt_第2页
台北市立阳明高级中学-OpticsonGraph.ppt_第3页
台北市立阳明高级中学-OpticsonGraph.ppt_第4页
台北市立阳明高级中学-OpticsonGraph.ppt_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Optics on Graphene,Gate-Variable Optical Transitions in Graphene Feng Wang, Yuanbo Zhang, Chuanshan Tian, Caglar Girit, Alex Zettl, Michael Crommie, and Y. Ron Shen, Science 320, 206 (2008).,Direct Observation of a Widely Tunable Bandgap in Bilayer Graphene Yuanbo Zhang, Tsung-Ta Tang, Caglar Girit1, Zhao Hao, Michael C. Martin, Alex Zettl1, Michael F. Crommie, Y. Ron Shen and Feng Wang (2009),Graphene (A Monolayer of Graphite),2D Hexagonal lattice,Electrically: High mobility at room temperature, Large current carrying capability Mechanically: Large Youngs modulus. Thermally: High thermal conductance.,Properties of Graphene,Quantum Hall effect, Barry Phase Ballistic transport, Klein paradox Others,Exotic Behaviors,Quantum Hall Effect,Y. Zhang et al, Nature 438, 201(2005),Optical Studies of Graphene,Optical microscopy contrast; Raman spectroscopy; Landau level spectroscopy.,Crystalline Structure of Graphite,Graphene,2D Hexagonal lattice,Band Structure of Graphene Monolayer,P.R.Wallace, Phys.Rev.71,622-634(1947),Band Structure of Monolayer Graphere,p-Electron Bands of Graphene Monolayer,Band Structure in Extended BZ,Band Structure near K Points,10 eV,Vertical optical transition,Van Hove Singularity,K,K,Monolayer,Bilayer,Band Structures of Graphene Monolayer and Bilayer near K,EF is adjustable,x,x,Exfoliated Graphene Monolayers and Bilayers,Monolayer,Bilayer,Reflecting microscope images.,K. S. Novoselov et al., Science 306, 666 (2004).,20 m,Raman Spectroscopy of Graphene,A.S.Ferrari, et al, PRL 97, 187401 (2006),(Allowing ID of monolayer and bilayer),Reflection Spectroscopy on Graphene,Experimental Arrangement,Doped Si,Graphene,Gold,290-nm Silica,OPA,Det,Infrared Reflection Spectroscopy to Deduce Absorption Spectrum,Differential reflection spectroscopy: Difference between bare substrate and graphene on substrate,A,B,-dR/R (RA-RB)/RA versus w,RA: bare substrate reflectivity RB: substrate + graphene reflectivity,20 m,dR/R = -Reh(w)s(w),h(w) from substrate s(w) from graphene: interband transitons free carrier absorption,Re s(w)/w: Absorption spectrum,Spectroscopy on Monolayer Graphene,Monolayer Spectrum,x,C: capacitance,Experimental Arrangement,Doped Si,Graphene,Gold,290-nm Silica,OPA,Det,Vg,Gate Effect on Monolayer Graphene,X,X,X,Small density of states close to Dirac point E = 0 Carrier injection by applying gate voltage can lead to large Fermi energy shift .,EF can be shifted by 0.5 eV with Vg 50 v; Shifting threshold of transitions by 1 eV,If Vg = Vg0 + Vmod, then should be a maximum at,Vary Optical Transitions by Gating,Laser beam,Vary gate voltage Vg.,Measure modulated reflectivity due to Vmod at V,( Analogous to dI/dV measurement in transport),Results in Graphene Monolayer,= 350 meV,The maximum determines Vg for the given EF.,Mapping Band Structure near K,For different w, the gate voltage Vg determined from maximum is different, following the relation ,Slope of the line allows deduction of slope of the band structure (Dirac cone) ,2D Plot of Monolayer Spectrum,Experiment,Theory,D(dR/R) (dR/R) 60V -(dR/R) -50V,Vg = 0,Strength of Gate Modulation,Bilayer Graphene (Gate-Tunable Bandgap),Band Structure of Graphene Bilayer,For symmetric layers, D = 0 For asymmetric layer, D 0,E. McCann, V.I.Falko, PRL 96, 086805 (2006);,Doubly Gated Bilayer,Asymmetry: D D (Db + Dt)/2 0 Carrier injection to shift EF: F dD = (Db - Dt),Sample Preparation,Effective initial bias due to impurity doping,Transport Measurement,Maximum resistance appears at EF = 0,Lowest peak resistance corresponds to Db = Dt = 0 .,Optical Transitions in Bilayer,I: Direct gap transition (tunable, 250 meV) II, IV: Transition between conduction/valence bands (400 meV, dominated by van Hove singularity) III, V: Transition between conduction and valence bands (400 meV, relatively weak) If dEF=0, then II and IV do not contribute,Bandstructure Change Induced by,Transitions II & IV inactive Transition I active,x,x,IV,II,Differential Bilayer Spectra (dD = 0) (Difference between spectra of D0 and D=0),I,I,Larger bandgap stronger transition I because ot higher density of states,IV,Charge Injection without Change of Bandstructure (D fixed),x,dD = 0,dD 0,Transition IV becomes active Peak shifts to lower energy as D increases Transition III becomes weaker and shifts to higher energy as D increases.,IV,III,Difference Spectra for Different D between dD=0.15 v/nm and dD=0,Larger D,Bandgap versus D,D(dR/R) (dR/R) 60V -(dR/R) -50V,is comparable to dR/R in value,Strength of Gate Modulation,Summary,Grahpene exhibits interesting optical behaviors:. Gate bias can significantly modify optical transitions over a broad spectral range. Single gate bias shifts the Fermi level of monolayer graphene. Spectra provides information on bandstructure, allowing deduction of VF (slope of the Dirac cone in the bandstructure). Double gate bias tunes the band

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论