函数的连续性(136).ppt_第1页
函数的连续性(136).ppt_第2页
函数的连续性(136).ppt_第3页
函数的连续性(136).ppt_第4页
函数的连续性(136).ppt_第5页
已阅读5页,还剩53页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 连续性概念 2 连续函数的性质 3 闭区间上连续函数的性质,第四章 函数的连续性,1 连续性概念,第四章 函数的连续性,1、,2、,(1,2),从图象上看, 在 处“连续”, 在 处“间断”。,图象:,图象:,函数的连续性,设函数y=f(x)在点x0的某一个邻域U(x0)内有定义,称Dy=f(x0+Dx)-f(x0)为函数y的增量,在邻域U(x0)内 若自变量x从初值x0变到终值x1 则称Dx=x1-x0为自变量x的增量,函数的增量,函数的改变量(增量),设有函数 ,在函数定义域内,当 从 变到 时,函数 相应地从 变到 称 为函数 在 处的改变量(增量)。,当变量 由初值 变到终值 时,称终值与初值 的差 为变量 的改变量(增量),记为 , 即,一、函数连续性的概念,那么称函数 在点 处连续,点 称为函数 的 连续点。,2、函数在一点处的连续性,定义 如果,(1)函数 在 处及其近旁有定义;,(2) 存在;,(3),提示:,设x=x0+Dx 则当Dx0时 xx0 因此,Dy=f(x0+Dx)-f(x0),2、函数在一点处的连续性,讨论: 如何用e-d 语言叙述函数的连续性定义?,e 0 d 0 当|x-x0|d 有|f(x)-f(x0)|e ,提示:,2、函数在一点处的连续性,左连续与右连续,结论,函数y=f(x)在点x0处连续函数y=f(x)在点x0处左连续且右连续,2、函数在一点处的连续性,(2)函数的左连续、右连续:设函数 在 处 及其左(或右)近旁有定义,如果 (或 ),那么称函数 在 左连 续(或右连续)。,(1)如果函数 在开区间 内每一点都连续, 称函数 在 内连续。,3、函数在区间上的连续性,如果 在开区间 内连续,且在右端点 处左连续,在左端点 处右连续,那么称函数 在 闭区间 上连续。,连续函数的图象是一条连续不间断的曲线。,函数 y=sin x 在区间(- +)内是连续的,这是因为 函数y=sin x在(- +)内任意一点x处有定义 并且,在区间上每一点都连续的函数 叫做在该区间上的连续函数 或者说函数在该区间上连续,连续函数举例,3、函数在区间上的连续性,例1、 设 ,求适合下列条件的函数的改变量(增量)。 (1) 由1变到1.2 (2) 由1变到0.8 (3) 由1变到,(2),(3),解:,(1),练习1、 求函数 ,当 , 时的改变量。,解: 的初值为1,终值为1.5,解: 根据定义的三个步骤进行验证:,(1) 的定义域是 ,故 在 及其附近有定义, ;,(2),所以,(3),因此 在 处连续。,符合定义的三个步骤。,(2),(3),所以 时, 在 处连续。,解:由定义的三个步骤进行验证:,(1),1,-1,x,y,0,二、 函数的间断点,如果函数 在 处不连续,那么称函数 在 处是间断的,并称点 为函数 的间断点或不连续点。,由函数 在 处连续的定义知,当函数 有下列三种情形之一时,函数 在 处间断。,定理1 基本初等函数在其定义域内都是连续的。,通常把间断点分成两类 设 x0是函数f(x)的间断点 如果左极限f(x0-)及右极限f(x0+)都存在 那么x0称为函数f(x)的第一类间断点 不属于第一类间断点的间断点 称为第二类间断点 在第一类间断点中 左、右极限相等者称为可去间断点,间断点的类型,注:,不相等者称为跳跃间断点,注:,无穷间断点和振荡间断点显然是第二间断点,例如:,(1)函数 在 处无定义 所以 是该函数的间断点。,(3),函数 ,在 处有定义, 且 , 但 所以 是该函数的间断点。,间断点举例,例1,例2,当x0时 函数值在-1与+1之间变动无限多次,所以点x=0是函数的间断点,所以点x=0称为函数的振荡间断点,间断点举例,所以点x=1是函数的间断点,如果补充定义 令x=1时y=2 则所给函数在x=1成为连续 所以x=1称为该函数的可去间断点,例3,间断点举例,所以x=1是函数f(x)的间断点,如果改变函数f(x)在x=1处的定义 令f(1)=1 则函数在x=1成为连续 所以x=1也称为此函数的可去间断点,例4,间断点举例,因函数f(x)的图形在x=0处产生跳跃现象 我们称x=0为函数f(x)的跳跃间断点,例5,间断点举例,例4 已知函数 问函数 有无间断点。,解:点 处可能间断,分三步验证。,(1) 在 及其附近有定义,且,(2),不存在,所以,函数 在 处间断。,三、初等函数的连续性,1、定理:一切初等函数在其定义区间内都是连续的。,2、由函数连续的定义,如果函数 在 处连续, 有,3、分段函数只可能在分段点处间断。,例5 求,解: 设 因为 是初等函数,其定义域为 ,而 根据初等函数连续性的定理 得到函数在 处连续,,练习3,讨论下列函数在给定点处的连续性。,(1) 在 处,(2) 在 处,解: ,,解:,所以 , 在 处连续,所以, 不存在, 在 处间断。,求下列 函数的间断点,(3),(4),解: 为初等函数,在定义域内连续 , ,定义域为 间断点为,解: 不是初等函数,分段点 且,因为 所以, 在 处间断。,(5)求极限,解:初等函数在定义区间内连续,函数 定义域为 所以,,小结,(1), 函数的连续性;,(3), 函数的间断点;,(2), 函数左连续与右连续;,(4), 初等函数的连续性.,作业,P73: 2, 3, 4, 5, 6, 7.,2 连续函数的性质,第四章 函数的连续性,定理1,(局部有界性),定理2,(局部保号性),一、连续函数的性质,定理3,例1 因为sin x和cos x都在区间(- +)内连续 所以tan x和cot x在它们的定义域内是连续的 三角函数 sin x、cos x、sec x、csc x、tan x、cot x 在其有定义的区间内都是连续的,(连续函数四则运算法则),定理4,如果函数f(x)在区间Ix上单调增加(或减少)且连续 那么它的反函数xf 1(y)在区间Iyy|yf(x) xIx上也是单调增加(或减少)且连续的,所以它的反函数y=arcsin x 在区间-1 1上也是连续的,例2,同样 y=arccos x 在区间-1 1上是连续的 y=arctan x 在区间(- +)内是连续的 y=arccot x 在区间(- +)内是连续的,(反函数的连续性),反三角函数arcsin x、arccos x、arctan x、arccot x在它们的定义域内都是连续的,定理4,如果函数f(x)在区间Ix上单调增加(或减少)且连续 那么它的反函数xf 1(y)在区间Iyy|yf(x) xIx上也是单调增加(或减少)且连续的,所以它的反函数y=arcsin x 在区间-1 1上也是连续的,例2,(反函数的连续性),注:,(1)把定理中的xx0换成x 可得类似的定理,提示:,定理5,例3,解,设函数yfg(x)由函数yf(u)与函数ug(x)复合而成,(复合函数的连续性),设函数yfg(x)由函数yf(u)与函数ug(x)复合而成 U(x0)Df o g 若函数 ug(x) 在点 x0 连续 函数 yf(u)在点u0g(x0)连续 则复合函数yfj(x)在点x0也连续,定理5,定理5,设函数yfg(x)由函数yf(u)与函数ug(x)复合而成,(复合函数的连续性),(复合函数的连续性),sin u 当-u+时是连续的,例4,解,内是连续的,二、初等函数的连续性,结论 基本初等函数在它们的定义域内都是连续的 一切初等函数在其定义区间内都是连续的,注: 所谓定义区间 就是包含在定义域内的区间,例6,例5,解,解,利用连续性求极限举例,例7,令a x-1=t,解,则x=log a(1+t) x0时t0 于是,利用连续性求极限举例,例8 求,解: 设 因为 是初等函数,其定义域为 ,而 根据初等函数连续性的定理 得到函数在 处连续,,例9 求极限,解:初等函数在定义区间内连续,函数 定义域为 所以,,小结,(1), 连续函数的局部有界性;,(3), 四则运算法则;,(2), 局部保号性;,(6), 初等函数的连续性.,作业,P80: 1, 2, 3, 4, 5, 6, 7.,(4), 反函数的连续性;,(5), 复合函数的连续性;,3 闭区间连续函数的性质,第四章 函数的连续性,一、有界性与最大值最小值定理,最大值与最小值 对于在区间I上有定义的函数f(x) 如果有x0I 使得对于任一xI都有 f(x)f(x0) (f(x)f(x0) 则称f(x0)是函数f(x)在区间I上的最大值(最小值),最大值与最小值举例:,函数 f(x)=1+sinx在区间0 2p上有最大值 2 和最小值 0 ,函数y=sgn x 在区间(- +)内有最大值1和最小值-1 但在开区间(0 +)内 它的最大值和最小值都是1,最大值与最小值举例:,一、有界性与最大值最小值定理,最大值与最小值 对于在区间I上有定义的函数f(x) 如果有x0I 使得对于任一xI都有 f(x)f(x0) (f(x)f(x0) 则称f(x0)是函数f(x)在区间I上的最大值(最小值),并非任何函数都有最大值和最小值 例如,函数f(x)=x在开区间(a b)内既无最大值又无最小值,应注意的问题:,一、有界性与最大值最小值定理,最大值与最小值 对于在区间I上有定义的函数f(x) 如果有x0I 使得对于任一xI都有 f(x)f(x0) (f(x)f(x0) 则称f(x0)是函数f(x)在区间I上的最大值(最小值),说明:,定理1(最大值和最小值定理) 在闭区间上连续的函数在该区间上一定能取得它的最大值和最小值,又至少有一点x2a b 使f(x2)是f(x)在a b上的最小值,至少有一点x1a b 使f(x1)是f(x)在a b上的最大值,定理说明 如果函数f(x)在闭区间a b上连续 那么,应注意的问题: 如果函数仅在开区间内连续 或函数在闭区间上有间断点 那么函数在该区间上就不一定有最大值或最小值,例如 函数f(x)=x在开区间(a b) 内既无最大值又无最小值,定理1(最大值和最小值定理) 在闭区间上连续的函数在该区间上一定能取得它的最大值和最小值,又如 如下函数在闭区间0 2 内既无最大值又无最小值,应注意的问题: 如果函数仅在开区间内连续 或函数在闭区间上有间断点 那么函数在该区间上就不一定有最大值或最小值,定理1(最大值和最小值定理) 在闭区间上连续的函数在该区间上一定能取得它的最大值和最小值,定理2(有界性定理) 在闭区间上连续的函数一定在该区间上有界,证明 设函数f(x)在闭区间a b上连续 根据定理1 存在f(x)在区间a b上的最大值M和最小值m 使任一xa b满足 mf(x)M 上式表明 f(x)在a b上有上界M和下界m 因此函数f(x)在a b上有界,定理1(最大值和最小值定理) 在闭区间上连续的函数在该区间上一定能取得它的最大值和最小值,二、零点定理与介值定理,注: 如果x0使f(x0)=0 则x0称为函数f(x)的零点,定理3(零点定理) 设函数f(x)在闭区间a b上连续 且f(a)与f(b)异号 那么在开区间(a b)内至少一点x 使f(x)=0,例1 证明方程x3-4x2+1=0在区间(0 1)内至少有一个根 证明 设 f(x)=x3-4x2+1 则f(x)在闭区间0 1上连续 并且 f(0)=10 f(1)=-20 根据零点定理 在(0 1)内至少有一点x 使得 f(x)=0 即 x 3-4x 2+1=0 这说明方程x3-4x2+1=0在区间(0 1)内至少有一个根是x ,二、零点定理与介值定理,定理3(零点定理) 设函数f(x)在闭区间a b上连续 且f(a)与f(b)异号 那么在开区间(a b)内至少一点x 使f(x)=0,定理4(介值定理) 设函数 f(x)在闭区间a b上连续 且f(a)f(b) 那么 对于f(a)与f(b)之间的任意一个数C 在开区间(a b)内至少有一点x 使得f(x)=C ,二、零点定理与介值定理,定理3(零点定理) 设函数f(x)在闭区间a b上连续 且f(a)与f(b)异号 那么在开区间(a b)内至少一点x 使f(x)=0,二、零点定理与介值定理,定理3(零点定理) 设函数f(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论