基向量法解决立体几何问题.ppt_第1页
基向量法解决立体几何问题.ppt_第2页
基向量法解决立体几何问题.ppt_第3页
基向量法解决立体几何问题.ppt_第4页
基向量法解决立体几何问题.ppt_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

利用空间向量解决立体几何问题,数学专题二,学习提纲,二、立体几何问题的类型及解法,1、判断直线、平面间的位置关系; (1)直线与直线的位置关系; (2)直线与平面的位置关系; (3)平面与平面的位置关系; 2、求解空间中的角度; 3、求解空间中的距离。,1、直线的方向向量; 2、平面的法向量。,一、引入两个重要空间向量,二.立体几何问题的类型及解法,1.判定直线、平面间的位置关系 (1)直线与直线的位置关系 不重合的两条直线a,b的方向向量分别为a ,b. 若ab,即a=b,则ab. 若ab,即ab = 0,则ab,a,b,a,b,例1已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,C1CB=C1CD=BCD=,求证: C C1BD,A1,B1,C1,D1,C,B,A,D,证明:设 a, b, c, 依题意有| a |=| b |, 于是 a b = c (a b)= ca cb = |c|a|cos|c|b| cos=0 C C1BD,2.P是ABC所在平面外的一点,PD、PE、PF分别是APB、 APC,BPC 的平分线,且PD PE,求证:PE PF,PF PD。,所以 PF PE ;同理 PF PD 。,证明,直线和直线垂直,B,线线垂直,7 在空间四边形ABCD中,M,N分别是AD,BC的中点,求证:2MN=AB+DC,且MN,AB,CD平行于同一平面。,证明,共面问题,(2)直线与平面的位置关系 直线L的方向向量为a,平面的法向量为n,且L . 若an,即a =n,则 L 若an,即an = 0,则a .,n,a,n,a,L,L,(3)平面与平面的位置关系 平面的法向量为n1 ,平面的法向量为n2 若n1n2,即n1=n2,则 若n1n2,即n1 n2= 0,则,n2,n1,n1,n2,8 在平行六面体AC中,E,F,G分别是AD,DD,DC的中点,求证:平面EFG/平面ABC。,证明,面面平行,13在平行六面体AC中,AB=AD, AAD=AAB= DAB=60. (1)求证:AA BD; (2)当 的值为多少时,才能使AC平面ABD.请证明。,证明,线线线面垂直,13(2)在平行六面体AC中,AB=AD,AAD=AAB=DAB=60. (2)当 的值为多少时,才能使AC平面ABD.请证明。,解:,线线线面垂直2,如图,60的二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直AB,已知AB4,AC6,BD8,求CD的长.,2.求空间中的角,(1)两异面直线的夹角 利用向量法求两异面直线所成的夹角,不用再把这两条异面直线平移,求出两条异面直线的方向向量,则两方向向量的夹角与两直线的夹角相等或互补,我们仅取锐角或直角就行了.,(2)直线与与平面所成的角 若n是平面的法向量, a是直线L的方向向量,设L与所成的角, n与a所成的角 则 = - 或= - 于是, 因此,n,n,a,a,(3)二面角 设n1 、n2分别是二面角两个半平面、的法向量,由几何知识可知,二面角-L-的大小与法向量n1 、n2夹角相等(选取法向量竖坐标z同号时相等)或互补(选取法向量竖坐标z异号时互补),于是求二面角的大小可转化为求两个平面法向量的夹角,这样可避免了二面角的平面角的作图麻烦.,3.求解空间中的距离,(1)异面直线间的距离 两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算. 如图,设两条异面直线a、b的公 垂线的方向向量为n, 这时分别在 a、b上任取A、B两点,则向量在n 上的正射影长就是两条异面直线 a、b的距离. 即两异面直线间的距离等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.,(2)点到平面的距离 A为平面外一点(如图), n为平面的法向量,过A作平面的斜线AB及垂线AH. = = . 于是,点到平面的距离等于平面内外两点的向量和平面的法向量的数量积的绝对值与平面的法向量模的比值.,n,A,B,H,空间向量理论引入立体几何中,通常涉及到夹角、平行、垂直、距离等问题,其方法是不必添加繁杂的辅助线,只要建立适当的空间直角坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论