




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
24.3.1圆周角课 题24.3.1圆周角教 学目 标1.了解圆周角的概念。2.了解圆周角和圆心角的关系,直径所对的圆周角的特征。3.能应用圆心角和圆周角的关系、直径所对的圆周角的特征进行简单的证明和计算。4.通过圆周角定理的证明使学生进一步体会分类讨论的思想;继续培养学生的归纳和逻辑推理能力。教材分析重 点圆周角定理及其两个推论与应用。难 点对圆心角和圆周角关系的探索,分类思想的应用。教 具电脑、投影仪教学过程(一) 创设情境,激发兴趣如上图,同学们能找到圆心角吗?它具有什么样的特征?(顶点在圆心,两边与圆相交的角叫做圆心角)今天我们要学习圆中的另一种特殊的角,它的名称叫做圆周角。(板书课题)(二)观察抽象,形成概念1、究竟什么样的角是圆周角呢?像图(3)中的角就叫做圆周角,而图(2)、(4)、(5)中的角都不是圆周角。图(3)中的角有哪些特点?同学们可以通过讨论归纳如何判断一个角是不是圆周角。圆周角:顶点在圆上,两边与圆相交的角叫做圆周角。(板书)2、练习:图中哪个图中含有圆周角?(三)实践操作,探究性质1、探究半圆或直径所对的圆周角等于多少度?而的圆周角所对的弦是否是直径?(1)动手操作如图,线段AB是O的直径,点C是O上任意一点(除点A、B),那么,ACB就是直径AB(或者半圆)所对的圆周角.想想看,ACB会是怎么样的角?为什么呢?启发学生用量角器量出的度数,而后让同学们再画几个直径AB所对的圆周角,并测量出它们的度数,通过测量,同学们感性认识到直径所对的圆周角等于(或直角)。(2)大胆猜想:直径所对的圆周角等于90(或直角)。(3)推理证明证明:因为OAOBOC,所以AOC、BOC都是等腰三角形,所以OACOCA,OBCOCB.又因为OACOBCACB180,所以ACBOCAOCB180290.因此,不管点C在O上何处(除点A、B),ACB总等于90。(4)归纳总结:半圆或直径所对的圆周角都相等,都等于90(直角)。反过来也是成立的,即90的圆周角所对的弦是圆的直径。2、那么一条弧所对的圆周角等于多少度呢?探究同一条弧所对的圆周角和圆心角的关系(1)动手操作:分别量一量右图中弧AB所对的两个圆周角的度数比较一下. 再变动点C在圆周上的位置,看看圆周角的度数有没有变化. 你发现其中有什么规律吗?(2)分别量出右图中弧AB所对的圆周角和圆心角的度数,比较一下,你发现什么?我们可以发现,圆周角的度数没有变化,并且圆周角的度数恰好为同弧所对的圆心角的度数的一半。(3)大胆猜想:在一个圆中,一条弧所对的任意一个圆周角的大小都等于该弧所对的圆心角的一半。(4)如下图所示,可将圆对折,使折痕经过圆心O和圆周角的顶点C,这时可能出现三种情况:DD折痕是圆周角的一条边,折痕在圆周角的内部,折痕在圆周角的外部。归纳总结:由上述操作可以发现,虽然一条弧所对的圆周角有无数个,但根据它们与圆心角的位置关系,归纳起来却只有三种情况:圆心在圆周角的边上;圆心在圆周角的内部;圆心在圆周角的外部。因此我们可以分三种情况证明这一猜想。(5)推理证明已知:在O中,弧AB所对的圆周角是ACB所对的圆心角是AOB求证:ACB=AOB证明:分三种情况讨论。(1)圆心在圆周角的边上,即BC过圆心如图(1)OA=OC A=CAOB是AOC的外角 AOB=ACB+A=2ACBACB=AOB(2)圆心在圆周角的内部,如图(2)作直径CD,利用(1)的结论,有1=AOD,2=BODACB=1+2=AOB(3)圆心在圆周角的外部,如图(3)作直径CD,利用(1)的结论,有ACD=AOD,2=BOD1=ACD-2=AOD-BOD=(AOD-BOD)=AOB即ACB=AOB4)归纳总结圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半;推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧相等。(再将以上所讲的推论2总结板书在后面)3、练习:试找出图中所有相等的圆周角。(四)例题讲解,形成技能例1:如图,AB是O的直径,弦CD与AB相交于点E,ACD=60, ADC=50,求CEB的度数.分析:注意引导学生用多种方法解决此题。(五)课堂练习,巩固新知1、课后练习2、3、42、如左图,点A、B、C、D在圆上,AB=8,BC=6,AC=10,CD=4,求AD的长。3、如右图,AB是O的直径,CDAB,P是CD上的任意一点(不与点C、D重合),APC与APD相等吗?为什么?(六)课堂总结,形成系统:通过本节课的学习,你有何收获?还有哪些疑惑?本节课我们一同学习探究了两个知识点:圆周角的定义
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 项目十七装载机工作装置的检测与修复任务1结构件的拆装与调整
- 斜二轴测图不改变原物体与投影面的相对位置物体正放改变投射线
- 无侧限抗压强度试验赵凤杰四川交通06课件
- 为了保证行车安全和必要的线路通过能力铁路上每隔一定距离10
- 教育行业教育虚拟现实报告:VR技术在教育领域的创新应用
- 2025年主题公园沉浸式体验项目开发与景区经济效益分析报告
- 2025年特色农产品冷链物流中心冷链物流行业冷链物流行业产业链整合建议
- 自我牵伸康复
- 眩晕症的中医护理常规
- 冬天里的哈气活动
- 篮球培训报名合同协议
- 金属非金属矿山重大事故隐患判定标准-尾矿库
- 自考00061国家税收历年真题及答案
- 公共组织绩效评估-形考任务一(占10%)-国开(ZJ)-参考资料
- 冠状动脉介入诊断治疗
- 高效催化剂的开发与应用-全面剖析
- 冀少版(2024)七年级下册生物期末复习知识点填空练习题(无答案)
- (四调)武汉市2025届高中毕业生四月调研考试 物理试卷(含答案)
- (2024)仁爱科普版七年级下册英语全册知识点总结 (2022新课标 完整版)
- 医院普法知识培训课件
- 法律尽职调查委托协议
评论
0/150
提交评论