已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习椭圆、双曲线、抛物线存在一些困惑?,1、椭圆、双曲线定义相似,抛物线的定义与椭圆、双曲线的定义区别较大 2、离心率:椭圆0e1 ,双曲线 e1, 抛物线有没有离心率?什么曲线的离心率等于1?,圆锥曲线的统一定义,平面内到一定点F的距离和到一定直线l (F不在l上)的距离比等于1的动点P 的轨迹是抛物线。,平面内到一定点F的距离和到一定直线l(F不在l上)的距离比为常数(不等于1)的动点P 的轨迹是什么?,在推导椭圆的标准方程时,我们曾经得到这样一个式子,思考?,你能解释这个式子的几何意义吗?,思考,平面内到一定点F 与到一条定直线l ( 点F 不在直线l 上)的距离之比为常数 e 的点的轨迹:,当 0 e 1 时, 点的轨迹是椭圆.,当 e 1 时, 点的轨迹是双曲线.,这样,圆锥曲线可以统一定义为:,当 e = 1 时, 点的轨迹是抛物线.,例1:(1)已知双曲线 上一点P到左焦点的距离为14,求P点到右准线的距离.,(2)椭圆,P为椭圆上一点,且F1PF2=90 , 求F1PF2的面积.,的左右焦点分别为F1、F2,90,60,变2: 已知动点P(x,y) 满足 此方程表示的轨迹是椭圆,则m的范围为,例2 :已知动点P(x,y) 满足 则P的轨迹是,变1: 已知动点P(x,y) 满足 则P的轨迹是,典型例题,分析:,分析:,抛物线,直线,例3已知点A 为椭圆 内一点, 为其右焦点,M为椭圆上一动点,,(1)求 的最大值;,例3已知点A 为椭圆 内一点, 为其右焦点,M为椭圆上一动点,,(1)求 的最大值;,A,M,分析:,例3已知点A 为椭圆 内一点, 为其右焦点,M为椭圆上一动点,,(1)求 的最大值;,(2)求 的最小值。,例3已知点A 为椭圆 内一点, 为其右焦点,M为椭圆上一动点,,M,K,分析:,N,(2)求 的最小值.,2,小结: 1、一个定义:圆锥曲线 的统一定义; 2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026-2031中国滴眼液市场评估及投资前景预测报告
- 小学科学《变化中伴随的现象》同步练习教案
- 大学生自我设计就业指教案
- 给水管道工程施工组织设计试卷教案(2025-2026学年)
- 人教版高中数学必修全套教案
- 优化方案高中地理区域和区域差异中图版必修省公共课全国赛课获奖教案
- 湘教版一年级美术上册我的太阳设计教案
- 六年级品德与社会上册第三单元腾飞的中国教案北师大版(2025-2026学年)
- 2025年护理实验室安全题目及答案
- 2024年恩施州专项招聘公费师范毕业生及国家优师计划毕业生考试真题
- 激励销售培训课件
- 招标采购自查自纠及整改措施报告范文
- 物流地产课件
- 招商中心客户接待标准流程
- (2025年标准)服装企业机密协议书
- 高性能纸浆改性方法-洞察及研究
- 商业秘密培训课件
- 产品改制管理办法
- 龙江森工历年考试题库及答案
- “湖北工匠杯”全省职工职业技能大赛无人机驾驶员赛项考试题及答案
- 2025年世界遗产影响评估指南与工具手册-联合国科教文组织
评论
0/150
提交评论