充电电阻故障分析及改进措施.doc_第1页
充电电阻故障分析及改进措施.doc_第2页
充电电阻故障分析及改进措施.doc_第3页
充电电阻故障分析及改进措施.doc_第4页
充电电阻故障分析及改进措施.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品论文推荐充电电阻故障分析及改进措施班建明,魏武忠,宁小辉 深圳地铁有限公司运营分公司车辆部,广东深圳(518000) e-mail:摘要:本文简述了深圳地铁 1 号线列车牵引逆变器充电电路的工作原理,充分分析充电电 阻故障的原因,指出充电电阻设计上的问题和缺陷,并提出改进措施。关键词:充电电路,工作原理,改进措施1. 引言在城市轨道交通的列车设备上,牵引逆变器是牵引和控制的核心设备和动力源泉。牵 引设备发生故障轻者造成列车失去部分牵引动力,严重情况造成全列车完全散失牵引力。轻 者影响了列车运行的牵引制动控制性能,造成列车控制不平稳、停车不准确、列车晚点、下 线等,严重情况造成列车救援,对地铁运营产生严重的影响。因此,在列车牵引系统的设计 上,电路设计要精确,设备质量要可靠,以提高设备运行的可靠性,减少故障。本文以深圳 地铁 1 号线一期工程列车牵引逆变器充电电路为研究对象,介绍深圳地铁列车牵引逆变器充 电电路的工作原理,充分分析充电电阻烧损的原因,指出充电电路设计上存在的问题和缺陷, 提出设计的新思路和改进措施。2. 充电电路的工作原理2.1 牵引系统的介绍深圳地铁1号线列车是由4动2拖车组成的6列编组的列车,每列车由两个相间的三车单元(a-b-c-c-b-a)构成。b车和c车为动车,具有相同的、独立的列车牵引设备。牵引系统 其主要功能是把dc 1500v 电压逆变成带有可变振幅和频率的三相电压,用于的牵引和制动 牵引电机,产生牵引力或制动力,将电能转换成机械能或将机械制动能量转换成电能,实现 牵引或再生制动1。一节车的牵引系统电路图如图1所示,其主要由高速断路器、电抗器、 充电电路、电机逆变器、牵引电机(4个)、制动电阻器、接地碳刷等组成。红色框的为牵 引逆变器的充电电路。图1 单个牵引系统电路图2- 1 -2.2 充电电路的工作原理为了使电机逆变器与外部供电线路 dc 1500v 进行连接或断开,每个电机逆变器使用 一个线路高速断路器和一个充电电路,充电电路带有一个线路接触器,一个充电接触器及充 电电阻器。充电电路的充电顺序如图 2 所示,按压高速断路器的“合”按钮,高速断路器闭合, 电机逆变器的牵引控制单元(dcu/m)控制充电接触器闭合,外部供电通过充电接触器和 充电电阻器对电机逆变器的电容器进行充电,闭合 2s 后,dc link 电压充电升至 1000v 以 上,线路接触器闭合,线路接触器投入工作,延时 1s 后,断开充电接触器,再延时 1s 后, 电机逆变器启动投入正常工作。电机逆变器正常工作期间,线路接触器常闭合,充电接触器 处于断开状态。- 6 -3. 充电电路故障分析图 2 充电顺序图2从上面充电电路的工作原理可以看到,充电电路只是在电机逆变器启动开始阶段进行一次逻辑关系的闭合。电机逆变器工作期间,线路接触器处于常闭合的状态, 充电接触器处于 断开的状态。充电电路的充电接触器和充电电阻器,工作的时间和频率相当少,一天只是 2 至 3 次的启动,按理故障率应该相当小。但在深圳地铁 1 号线一期工程的列车中,电机逆变 器的充电电路故障共发生 35 件,其中充电电阻器烧损 32 件,充电接触器故障 3 件,充电电 阻器烧损故障为充电电路故障的主要故障。下面重点分析充电电路的充电电阻烧损故障。4. 充电电阻烧损故障分析4.1 充电电阻故障与列车无关深圳地铁 1 号线一期工程共有列车 22 列,列车按列车号顺序先后交货,相隔 2 年时间, 充电电阻烧损故障在 22 列车中共有 11 列车发生故障,故障列车分布散开,同一列车发生1-3 个充电电阻故障(1 列车共有 6 个充电电阻器),没有集中列车现象,所以,充电电阻烧损故障与列车无关。4.2 充电电阻故障多发生于使用一定时间后根据故障情况统计,充电电阻烧损多发生于使用 8 个月至 18 个月之间,在时间分布上 说明充电电阻是在使用一段时间后产生的故障,但也不能说明充电电阻使用一定时间后,一 定会发生烧损故障,因为 102 车和 105 车目前已使用超过 2 年半的时间,但从未发生过同类 故障。22 列车中有 11 列车未发生充电电阻故障,所以与列车无关。4.3 充电电阻故障与操作无关。我们对充电电阻发生烧损故障时的作业操作进行调查,故障多发生于电机逆变器启动闭 合充电接触器时,充电电阻就烧损,多数为一次性操作就发生故障,与操作手法和次数无关。 我们曾试验连续多次分断高速断路器,来多次启动电机逆变器,并未出现充电电路烧损现象。 并且电机逆变器控制对充电电阻过热有保护功能。我们多次试验证明多次充电后,充电电阻 过热保护功能起保护作用后,充电电阻并未烧损。因此,充电电阻烧损故障与操作无关。4.4 充电电阻故障发生具有瞬间性特点。我们下载了 dcu/m 的故障信息进行分析,故障信息代码为充电失败故障,查看环境信 息,当时充电接触器闭合后,dc-link 电压没有上升,500ms 后,充电接触器断开,检查 充电电路线路均正常,说明在充电接触器闭合时,高电压进入充电电阻器瞬间,充电电阻器 就烧损。我们对多次故障的调查和分析,多次表明充电电阻烧损只是在闭合的瞬间就烧损, 具有瞬间烧损的特点。5. 充电电阻烧损原因分析根据车辆技术资料和实际测量结果得出以下参数数据:充电电阻 j 由电阻合金丝绕制而 成,充电电阻 r=50,电气绝缘值为 350m,电容器 c=4mf,电压从 25v 充电到 1508v 的所需时间为 557ms,根据电容充电电流计算公式:du1508-25i = = 4*10-3 =10.6(a)dt557*10-3电阻功率为p=i2*r=(10.6)2*50=5618(瓦)根据供货商(bombardier)提供的关于充电电阻性能测试的试验报告,充电电阻在 正常充电情况下,一次充电可使电阻温度升高约 100,而电阻充电后的温度下降较慢,充 电电阻的温度从 300下降到 200需要 5 分钟的时间,温度从 300下降到 140需要 15 分钟的时间3。所以,充电电阻虽然只是瞬间充电,但实际是一个大功率电阻元件,在充电 瞬间产生较大的热量且难以散发出动。电阻烧损较多,我们对充电电阻进行解体检查,发现 充电电阻存在以下问题:5.1 充电电阻的电阻线圈机械结构安装不牢固。充电电阻的电阻线圈是直接装在充电电阻外壳内部(结构图见图 3),图 3 充电电阻侧面电阻是由两个相同的 100 电阻线圈并联组成,在机械结构的安装上,其左侧是连接外部导 线的电缆与电阻线圈相连,起到一定的固定作用。右侧没有任何的固定装置,悬空放置于电 阻的外壳中间,内部填充石灰粉,电阻线圈偏向一边,与绝缘树脂垫片直接接触,明显有烧 损的痕迹。如图 4 所示,充电电阻烧损最多的地方为电阻的两端,特别是在靠近绝缘树脂垫、 电阻线圈绕弯处、表面有密封胶处。图 4 烧损的充电电阻5.2 电阻外壳的密封胶过多,密封胶粘到电阻线圈上外壳的密封胶用于密封防水作用,但密封胶粘到电阻线圈上,使电阻线圈的热量散发不 出去,长期造成电阻线圈过热氧化而烧损。5.3 电阻线圈绕弯度过大如图 4 所示,电阻线圈是呈长方偏形绕线式电阻,电阻线圈弯曲度过大,解体过的充电 电阻,均发现此处有烧断现象,是电阻烧损较多的地方之一。电阻线圈弯曲度过大,使线圈 的机械性能发生变化,其电阻阻值增大,所以相同电流下发热较多,容易烧损。5.4 绝缘树脂垫片阻隔热量散出并使电阻线圈氧化充电电阻线圈与外壳之间,放置一层厚度约 1.5mm 的绝缘树脂垫片,用于电阻线圈与 电阻外壳的电气绝缘。在正常情况下,绝缘树脂片的电气绝缘大于 200 m,符合电气绝缘 要求,但其导热性较差,阻隔了内部热量通过外壳散发出去。内部高温的热量被绝缘树脂垫 片吸收后,使绝缘树脂垫片变为高温物体,由于电阻线圈移位,电阻线圈与绝缘树脂垫片相 接触,高温的绝缘树脂垫片烘烤着电阻线圈,造成其接触处的电阻线圈绝缘破损,线圈氧化, 如图 4 的黑色部分,长期不断的氧化使电阻线圈变黑阻值增大而烧损。综合以上 4 点,充电电阻是一个电阻线圈内部填充石灰粉完全密封于铝合金外壳的电 器,石灰粉排除空气,但其散热性较差,内部的绝缘树脂片进一步阻隔了内部热量散出。电阻线圈的偏移、电阻线圈上存在密封胶、电阻线圈弯度过大等不良因素,加剧电线线圈的氧化和老化,造成电阻线圈烧损。6. 改进措施6.1 使用质量可靠的充电电阻。由于充电电阻在设计上和质量上存在问题,更换新的充电电阻,经过一段时间的使用后, 还是会出现同样的故障。并且充电电阻为进口备件,采购周期较长,价格为 1350 元/件,价 格较贵。经过研究和调查,可选择铝壳电力型电阻器 al 系列电阻替换现有的充电电阻, 耐压为 2200v,阻值为 50,选用安装尺寸相同的或另加安装支架解决安装问题。铝壳电力型电阻器 al 系列的电阻具有特点:由弹簧合金电阻体与成型铝壳之组合, 经高温阳极处理后,再以特殊阻燃耐热水泥充填,待阴干,再藉由高温处理固定绝缘而 成。由于整个电阻器都被耐热水泥充填固定,不怕外来之机械力量与尘埃环境,不但功 率大而且坚固,耐震,散热良好,电阻温度系数小,呈直线变化,其变通性佳多重组合 选择,方便安装。电阻如图 5 所示。图 5 铝壳电力型电阻器6.2 改进充电电路连接。根据图 1 所示,充电电路完成充电后,充电接触器虽然断开,但充电电阻的另一端依然 连接在主电路中,这种连接存在的弊端是:外部供电电压存在波动,电阻接在电路中与地形 成一个 rc 谐振电路,受到网压波动时,rc 谐振电路有电流流动,电阻会产生一定的热量。 所以电阻处于空闲状态时依然产生热量,由于上面所述的原因,电阻的热量难以有效地散发出去,造成电阻的常态温度较高。还有,电阻连接在主电路中,供电电网的电压可能会出现高频尖峰过电压,对电阻造成损坏。针对以上问题,改进充电电路的连接方式,如图 5 所示, 选用双触头的充电接触器,连接于充电电阻两端,使充电电阻空闲时与主电路完全隔开,防 止充电电阻意外烧损或接地等故障。图 6 改进的充电电路连接参与文献1 met.szp1.50000.b.130, 深圳地铁列车控制电 路图 . 长春 . 长春长客 庞巴迪 轨道 车辆有限公司 2005.08.01。2 3egh314505.bal.en.4 深圳地铁列车操作手册 . 长春 . 长春长客 庞 巴迪轨道 车辆有限公 司2003.05.10。3 bombardier report about charging resestor failures 2007.10.16the failure analysis of the charging resistor andimprovement measureswei wuzhong,ban jianmin,ni xiaohuiadministration center of vehicle,branch company of operation,shenzhen metro co.,ltd,shenzhen,guangzhou(518000)abstractthis article summarized the function and principle of driving inversion charging circuit for the trains ofthe line 1 of s

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论