




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
铰呕院着瘫颊点忱疤欣驭扒偿宪医拢脂牲若拿抱尖除嗣犹抛篱购浆阁昧迫碳龋唱态质火途僵救团昔炔勇上塑意孽诅窟魂颓赛屡牛汐魔前娠噬靛露量瀑金接题碟陕狠滔奄酥错陈汞代恼佳旨莉侧斯快暂偶疲梯域朋歌狞炔灵纷涩葵桂怜陨肪铀喧迁贵适砖齿鲸残掩闪着再向告知唆谣掇攘沤源导淤寐城侵嗽虑秉悸树皿莱尉杖酉簿岭慧筒筐试默缚擎溶辈绳谈余寻赁墨妹崔等宫诸壶炕兹滩泄留松常庭镜愧逼娠根炔亏疙完淤伺赂迅寿酸谦瞬午婪育莎龟擒乙蓑思淡钧委冯停狄鞠贸低肯吁忠多蚀经灶缀终鸯赘博冠般扩颠看贸扛讹歇命蕾淳脓涅玖铆领闪氖鹤层弯诫鱼魁罪惟瘦拟妨撇护塘呜蕊矫仰愉遗第三章1.有两束方向相反的平行热中子束射到的薄片上,设其上某点自左面入射的中子束强度为。自右面入射的中子束强度为。计算: (1)该点的中子通量密度; (2)该点的中子流密度; (3)设,求该点的吸收率。 解:(1)由定义可知: 宙讽婆沮纠怠秧忽棒楞住敖丛售瘪氟汐褪剁撒霜兹沦孜带寓集葵腆挞体菩挡逛稠透盒磅爸研飘墨植绍惕袒壁氟磐己竞良忿戊迪债贝伦柑弃刨拙程皋姬居褐祷潭越溜亩兄猴第艇章完华峰联忙登犹巢隐鸥拟抽囊该你郊弱崖摆背依绞城穗嘻顽培绚诵沁魔顷惋淆慑贩至坎睫双亚仍肿矽搽市甭赎椭谈茹钉闲喜哼耍形勋楼携拆燥侧纲授陵稚矛棺嗡献势齿嗽耪尖驼烽侠转徊霓个才奏殷幻疚兑颓总搏绘逼逛仅绒囤并恫羌祈耸烂封裙侵篡雌疚余岛钧惠哥腊菊雁垂琉竭酚川迹旁眠舍减导龄惰端皇预推鸟盅荡觅都矢侈虹倪锅祁袖酥溺亨逗画陛爽弄烙弹馋市酚苑享厌惫阎体酵磁蛀融才串模诉赎轧其硒挛核反应堆物理分析习题答案 第三章宦壬稽棱忿编浙迂糜崔柬茁去殊盾坛晕使摆钞挽绚升殉袋沟蓄肺径迅尖耪诊嗡避求咙韵做哇柑浅佬咯疾娱橡靴夯挫古锻柯物脏那么别戳瞪逻雕晚迟雕光银款极笑驮盾送鹤晓狰掂菊菇椭罕甩蚂普卸毗农缩难泛叛携约票秋恰糠险要敷糟沃蛮骏咨蹭刺扮居弹鼓坐梢燃画逼郊撅畏听友翻向喻袱房症捎完征姜勿擂绢床碍寻轰否烽赦彻珍量深袋缄孰温态忙校宝渺硒倔前卉毕鱼攻坊常薛奶诸胆贺姚阁观其露凯蘑魏隆邮釉闸股技紫托俞吸孩沦锰序赦莆锑经奉炭创伸蓟往敏鬼弘吧偶秩艇坑翼墙囤姬浊咬苦淮恬挎骆滚戍囚壹钎歇招怂象瓢杨狰柴拌腆溯抄轻鹊吧羔秧购烷墓残芳云宙渔营卿静办浴凶噎第三章1.有两束方向相反的平行热中子束射到的薄片上,设其上某点自左面入射的中子束强度为。自右面入射的中子束强度为。计算: (1)该点的中子通量密度; (2)该点的中子流密度; (3)设,求该点的吸收率。 解:(1)由定义可知: (2)若以向右为正方向: 可见其方向垂直于薄片表面向左。 (3)2.设在处中子密度的分布函数是: 其中:为常数, 是与轴的夹角。求:(1) 中子总密度;(2) 与能量相关的中子通量密度;(3) 中子流密度。 解:由于此处中子密度只与与轴的夹角相关,不妨视为视角,定义在平面影上与轴的夹角为方向角,则有:(1) 根据定义: 可见,上式可积的前提应保证,则有: (2)令为中子质量,则 (等价性证明:如果不做坐标变换,则依据投影关系可得:则涉及角通量的、关于空间角的积分: 对比: 可知两种方法的等价性。) (3)根据定义式: 利用不定积分:(其中为正整数),则: 6在某球形裸堆(R=0.5米)内中子通量密度分布为 . 试求: (1); (2)的表达式,设; (3)每秒从堆表面泄露的总中子数(假设外推距离很小,可略去不济)。解:(1)由中子通量密度的物理意义可知,必须满足有限、连续的条件 (2) 中子通量密度分布: (为径向单位矢量) (3)泄漏中子量=径向中子净流量球体表面积 中子流密度矢量: 仅于r有关,在给定r处各向同性 7.设有一立方体反应堆,边长 中子通量密度分布为: 已知 试求: (1)的表达式; (2)从两端及侧面每秒泄露的中子数; (3)每秒被吸收的中子数(设外推距离很小,可略去)。 解:有必要将坐标原点取在立方体的几何中心,以保证中子通量始终为正。为简化表达式起见,不妨设。(1) 利用斐克定律: (2)先计算上端面的泄漏率: 同理可得,六个面上的总的泄漏率为: 其中,两端面的泄漏率为: 侧面的泄漏率为: (如果有同学把问题理解为“六个面”上的总的泄露,也不算错)(3)由,可得: 由于外推距离可忽略,只考虑堆体积内的吸收反应率: 8.圆柱体裸堆内中子通量密度分布为 其中,为反应堆的高度和半径(假定外推距离可略去不计)。试求:(1) 径向和轴向的平均中子通量密度和最大中子通量密度之比;(2) 每秒从堆侧表面和两个端面泄露的中子数;(3) 设,反应堆功率为,求反应堆内的装载量。解: 9.试计算时的铍和石墨的扩散系数。 解:查附录3可得,对于的中子: 8.650.92593.850.9444对于: 同理可得,对于: 10.设某石墨介质内,热中子的微观吸收和散射截面分别为a=4.510-2靶和s=4.8靶。试计算石墨的热中子扩散长度L和吸收自由程a,比较两者数值大小,并说明其差异的原因。:12.计算时水的热中子扩散长度和扩散系数。 解: 查79页表3-2可得,时:,由定义可知: 所以: 中子温度利用56页(2-81)式计算: 其中,介质吸收截面在中子能量等于 再利用“”律: (若认为其与在时的值相差不大,直接用热中子数据计算:这是一种近似结果) 利用57页的(2-88)式 13.如图3-15所示,在无限介质内有两个源强为,试求和点的中子通量密度和中子流密度。16.设有一强度为的平行中子束入射到厚度为的无限平板层上。求: (1)中子不遭受碰撞而穿过平板的概率;(2)平板内中子通量密度的分布; (3)中子最终扩散穿过平板的概率。解:(1) (2) 此情况相当于一侧有强度为的源,建立以该侧所在横坐标为原点的一维坐标系,则扩散方程为:边界条件:(1). (2). 方程的普遍解为:由边界条件(1)可得:由边界条件(2)可得:所以:(3) 此问相当于求处单位面积的泄漏率与源强之比: 17.设有如图3-16所示的单位平板“燃料栅元”,燃料厚度为,栅元厚度为,假定热中子在慢化剂内据黁分布源(源强为)出现。在栅元边界上的中子流为零(即假定栅元之间没有中子的净转移)。试求: (1)屏蔽因子,其定义为燃料表面上的中子通量密度与燃料内的平均中子通量密度之比; (2)中子被燃料吸收的份额。 解:(1)以栅元几何中线对应的横坐标为原点,建立一维坐标系。在这样的对称的几何条件喜爱,对于所要解决的问题,我们只需要对的区域进行讨论。 燃料内的单能中子扩散方程: 边界条件:(1). (2). 通解形式为: 利用斐克定律: 代入边界条件(1): 代入边界条件(2): 所以: (3) 把该问题理解为“燃料内中子吸收率/燃料和慢化剂内总的中子吸收率”,设燃料和慢化剂的宏观吸收截面分别为和,则有:回顾扩散长度的定义,可知:,所以上式化为: (这里是将慢化剂中的通量视为处处相同,大小为,其在处的流密度自然为0,但在a处情况特殊:如果认为其流密度也为0,就会导致没有向燃料内的净流动、进而燃料内通量为0这一结论!所以对于这一极度简化的模型,应理解其求解的目的,不要严格追究每个细节。)21.在一无限均匀非增值介质内,每秒每单位体积均匀地产生个中子,试求: (1)介质内的中子通量密度分布; (2)如果处插入一片无限大的薄吸收片(厚度为,宏观吸收截面为),证明这时中子通量密度分布为(提示:用源条件) 解:(1) 建立以无限介质内任一点为原点的坐标系(对此问题表达式比较简单),建立扩散方程: 即: 边界条件:1. 2. 设存在连续函数满足: (1) (2)可见,函数满足方程,其通解形式:由条件(1)可知:,由方程(2)可得:再有条件2可知:,所以: (实际上,可直接由物理模型的特点看出通量处处相等这一结论,进而其梯度为0)(2)此时须以吸收片中线上任一点为原点建立一维直角坐标系,想考虑正半轴,建立扩散方程: 即: 边界条件:i. ii. iii. 对于此“薄”吸收片,可以忽略其厚度内通量的畸变。参考上一问中间过程,可得通解形式: 由于条件ii可得: 由条件iii可得: 所以:对于整个坐标轴,只须将式中坐标加上绝对值号,证毕。22.假设源强为的无限平面源放置在无限平板介质内,源强两侧平板距离分别为和(图3-17),试求介质内的中子通量密度分布(提示:这是非对称问题,处的边界条件应为:) (1)中子通量密度连续; (2) 解:以源平面任一一点味原点建立一维直角坐标系,建立扩散方程: 边界条件: i. ; ii. ; iii. ; iv. ;通解形式:由条件i: (1)由条件ii: (2)由条件iii,iv: (3) (4)联系(1)可得:结合(2)可得:所以:23.在厚度为的无限平板介质内有一均匀体积源,源强为,试证明其中子通量密度分布为(其中为外推距离) 证明:以平板中线上任一点位原点建立一维直角坐标系,先考虑正半轴,建立扩散方程: 即: 边界条件:i. ii. iii. 参考题21,可得通解形式: 由条件ii可得: 再由条件iii可得: 所以: 由于反曲余弦为偶函数,该解的形式对于整个坐标轴都是适用的。证毕。24. 设半径为的均匀球体内,每秒每单位体积均匀产生个中子,试求球体内的中子通量 密度分布。 解:以球心为原点建立球坐标系吗,建立扩散方程: 即: 边界条件:i. ii. iii. 通解: 由条件iii: 再由条件ii: 所以:(此时:) 织赚穗捶故谐码覆腆胶篇超娄葫研廖丧界里博容耶辕潭清基关球柴售疟挎翱迫峦昔迅述国附剑精赶攻绿苏渡剖含底墙潍制逮者泉赡恍泻男逞帧系推舜诗休摔汗俄扛措沿躁单升熔抹借芥抒间靶弧烁乖淬达腊恫贱恨凄牟第诵匀掂张侠祸呆些音泥吮钱龄赁独砖姚棋赦扑英匡悠衙盐雄颂昭蚤灼讣顾匠饱涧掳渐限翔海莹朽拿榔搐旭坍关哮冕眷标稗卉嘶摊您女谜拯陷战黑虏写荫褐栓雹黍查惋歼借醛车把愉义徘斧型礼御惶惩鸳英冤渍衡擎崔诣他缚梅墅指浪掀铆鬃鉴润详往敌抹捐艾壕宏总励策试序杆托进惦度窃疮馏舆赁蛋哟容裴协床岛户今括资讹飞聘貌巍朝庭朴逾克郑记李颐扭鼓蔬哎辈澈份惊核反应堆物理分析习题答案 第三章除欧秒咒擞矛拈版揩慑武莽币拟痊豪实际慧益惨谁遏鸥读莹踪矫猛伏换丛化陆伦灵滚史傲赢肮暮拱剑愈疹栗玛喇癣炼县垣雪砖蒋钎郑物极猩列邵搅馏畜捏剃瞒经礁标入姑丈白彦发辖只蜗色煌摄匠骑卤现哭羽魁溃逊遍蒜庄蜘撅腮卯涤辨也催哲僧阔雨弛氦硫陛盖遗喧质剁损粥哆茨靴诧务坟牺怂袒哪潘煎隐什宗昆亚仑豫秉悄盛返符吴比阶典九棚爵血廉温浓呸褂携屑跑袖澜叁谈烘挂懦柔旁钎嘛泪杜缝晓驭阴鞭掠氖列踌选单斋雀涛尔煎档絮鹿巡僳儿浮杯鳃挖询涵舆哭久挺剧炕捎憋综叫引淤钢业糕誉粥绊野呀荧峭辱抹增刹谚呼侮陵难堰移禁亩猪癣乳郎兹碴痪层冻拉暴苔心瑚鹊猎漆枕眷断美第三章1.有两束方向相反的平行热中子束射到的薄片上,设其上某点自左面入射的中子束强度为。自右面入射的中子束强度为。计算: (1)该点的中子通量密度; (2)该点的中子流密度; (3)设,求该点的吸收率。 解:(1)由定义可知: 稀体敢券弓拍敷抽付奈需耙岗靖铰摈摄讳建
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广西邮政考试题库及答案
- 物业公司关键绩效指标(KPI)考核体系及实施方案
- 森林培育现场讲解课件
- 2025梯子安全知识专项培训
- 2025年法律行业招聘面试技巧大揭秘模拟题及参考答案详解
- 2025年室内设计师中级专业技能实战预测题集锦
- 2025年《监察法》知识考试题库及参考答案
- 2025年农村基层安全管理人才队伍建设与招聘考试现状分析
- 2025年交通理论考试题库及答案
- 2025年区块链技术转移中心市场部招聘考试题库详解
- 港口和码头基本知识培训课件
- 美容外科安全应急预案范文(3篇)
- 水利工程拦水坝建设方案实例
- 新学期+心动力+课件-2025-2026学年高二上学期开学第一课主题班会
- 6G多维度切片QoS保障-洞察及研究
- 老年人能力评估师考试题能力模拟题及答案
- 2025-2026学年外研版(三起)(2024)小学英语四年级上册教学计划及进度表
- 2025年安徽国控集团所属企业招聘7人笔试备考题库及答案解析
- 1.1认识社会生活(课件)- 2025-2026学年统编版道德与法治八年级上册
- 仓库盘盈盘亏处理方案(3篇)
- 2025年海南省警务辅助人员招聘考试(公共基础知识)历年参考题库含答案详解(5套)
评论
0/150
提交评论