(拉普拉斯变换在电路分析中的应用).ppt_第1页
(拉普拉斯变换在电路分析中的应用).ppt_第2页
(拉普拉斯变换在电路分析中的应用).ppt_第3页
(拉普拉斯变换在电路分析中的应用).ppt_第4页
(拉普拉斯变换在电路分析中的应用).ppt_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重提基本结构,一个假设集总模型(电阻电路和动态电路) 两类约束VCR + KCL、KVL 三大基本方法,-模型的类比(第三篇),模型的化简,第十二章 拉普拉斯变换在电路分析中的应用,变换与类比,变换,动态电路的时域模型,适用于正弦稳态分析,适用于线性时不变电路的一般分析,类比,12-1,供教师参考的意见,习题课,1 基本概念,2 s 域模型,3 反变换赫维赛德展开定理,4 网络函数与叠加方法,本章分为,12-2,1 基本概念,(1) 变换方法的基本步骤,(2) 拉氏变换方法的三个步骤,(c)反变换 回归到时域(方法的难点所在),(a)变换 把函数f(t)F(s) (拉氏变换),(3) 拉氏变换,12-3,其中s为复变数(复频率),f(t)则假定具有下列性质,定义式,12-4,(4) 数学家已表明拉氏变换可用来简化 线性常系数常微分方程的求解。,数学家已对各类的f(t)求得相应的F(s),制成手册,供查阅,如同查对数表。如,12-5,2 s 域模型,使用相量法,可不必从列电路微分方程做起, 根据两类约束的相量形式,利用相量模型,仿照 电阻电路的解法,即可解决问题,关键在于引入Z、 Y。拉氏变换法也可根据两类约束的s域形式,利用 s域模型,仿照电阻电路的解法,即可解决问题, 关键在于引入广义(generalized)阻抗Z(s) 、导纳 Y(s)。,12-6,(1) 两类约束的s域表达式,(a)拉氏变换的线性性质,由此可推广运用得KCL、KVL的s域形式:,其s域形式为,类似地,KVL的s域形式为,提问: 的s域形式?,12-7,(b)拉氏变换的积分性质,由此可得电容、电感VCR的s域形式。,电容VCR的s域形式,电容的广义阻抗,提问 : 若 ,s域模型如何? 与相量模型区别何在?,时域模型,s域模型,12-8,(b)拉氏变换的积分性质,由此可得电容、电感VCR的s域形式。,电感VCR的s域形式,电感的广义阻抗,提问 : 若 ,s 域模型如何?,时域模型,s域模型,12-9,求所示时域电路的相量模型和零初始状态的s域模型。,练习,12-10,(2),开关在t=0时闭合,求i(t)、 ,用s域分析法。,解,(a)求40V直流激励的拉氏变换。,初始条件:,(b)作s域模型,得,注意:本例为非零初始状态!易犯的错误: s域模型中未考虑初始电流源!,5s,12-11,(c)反变换比较系数法,为利用拉氏变换表反查,先将I(s)分解为部分(分项)分式之和。,得,比较系数后得,反查拉氏变换表,当部分分式多于2项时,使用比较系数法不方便!,12-12,3 反变换赫维赛德展开定理,(1)上例也可解答如下,与比较系数法所得结果相同。此处系根据 赫维赛德定理所提供的方法求解。,12-13,对线性时不变电路,在如教材表12-1所示各类 f(t)激励下,所得F(s)为s的有理函数,可表为,即两s多项式之比。如同上例,可将F(s)表为 部分分式之和,以便运用赫维赛德定理得出所需 结果。为此需对B(s)进行因式分解。,(2)对线性时不变电路情况,12-14,(a) B(s)=0 为不等根情况,已知,解,B(s)=0的三个不等根为-1、-2、-3。,12-15,(b) B(s)=0 含有重根情况,F(s) f(t),,解,12-16,(c) F(s)为假分式情况,F(s) f(t),,本题F(s)为假分式,先用长除法,化为真分式后再做。,解,12-17,4 网络函数与叠加方法,(b)相量模型的网络函数,(10-3),(c)共同的特点,单一激励下定义。与叠加方法相结合。,(3-1),12-18,(2) s域模型的网络函数 H(s),单一激励下,网络函数的定义,即,12-19,(3) 三个例题,(a) 求图所示电路的网络函数 。,解,作零初始状态s域模型。,求网络函数,必须明确: 何者为响应,何者为激励。,12-20,解,(b) 接续上题,,若 ,试求u(t)、即冲激响应h(t)。,另外,由本例可知:t=0时,冲激电流通过C, 引起电容电压由零到 V的跃变。,注意:由本例可知网络函数的另两个性质:, 网络函数的极点是网络的固有频率,12-21,(c)求图所示电路 i(t)、 。,作s域模型,解,12-22,解得,本题i(t)为零状态响应,含暂态响应与正弦稳态响应。,可得来自电路的极点s = -4,固有频率, 即时间常数,可得来自激励的极点 s =,4,3,12-23,(4)非零初始状态时的处理叠加方法,当 时,s域模型中含初始状态等效电源,它们所产生的零输入响应可单独算出,与零状态响应构成全响应。,接续上例,设 ,试求,作s域模型。,求初始电流源 的零输入响应,,U(s)处短路,由分流关系得,( ),括号部分可视为网络函数(转移电流比)的扩展(初始状态作为一种激励),上例得零状态响应,解,习题课,习题1,答案,12-24,已知某电路的网络函数,激励i(t)为单位阶跃电流,则阶跃响应u(t)在t=0时之值为,单位均为V,选( ),习题1 答案,12-25,解答,选(b),习题课,习题2,12-26,答案,试求图所示电路的s域戴维南等效电路, 已知,习题2 答案,12-27,解答,由叠加原理可得,由阻抗并联公式得,习题课,习题3,12-28,电路如图,t=0时开关闭合,求 , 已知初始状态为零。,答案,12-29,习题3答案,解答,由s域模型,12-30,习题课,习题4,答案,电路如图,t =0开关打开,此时电路早已进入稳态, 试求,12-31,习题4 答案,解答,t0时,相量法,12-32,习题4 答案(续),解答,t0时s域模型。其中初始电流源 与电感 的并联电路已等效为电压源 与电感 的串联电路。,12-33,习题课,习题5,答案,所示电路中开关闭合于a处已久, t=0时突然向b闭合,试求,12-34,习题5 答案,解答,t=0时电容电压均发生跃变:100V20V,0V20V。 s域分析中初始状态可用 时之值,不必用 值,t=0时的跃变自动计入响应。,t0时s域模型,12-35,1. 如有可能,建议阅读简明P.639,了解教材和教案在处理本章内容的基本思路。 关于拉氏变换,教材和教案都不希望把本章成为一次对高数或复变函数课程有关内容的重复、复习,况且还有后续课“信号与系统”。本课程只对拉氏变换在电路分析的应用作一最简单的介绍,以加强对变换方法的认识。,12-36,2. 拉氏变换和运算术既有联系又有区别。例如,对常数A,前者为A/s,而后者中,其象函数即为A。教材和教案摈弃了与运算术有关的名词,如象函数、运算阻抗、运算电路等,以求叙述简明、利索。 关于s域方法的单位问题。美国教材一般有三种处理方式:包括电压、电流在内,一概不注单位,如Bobrow,Siebert等;只在电阻注为单位,其他一概不注,如Nilson、Irwin等;依变换前的单位加注,电压的变换式仍注V,如Hayt。以居多,本教材、教案属,且元件除非特别指出,一般均以广义阻抗表示。教案12-9页练习解答中为便于比较,s域模型中元件加注了单位。,12-37,3 . L的s域模型先导出电流源并联形式,仅需用积分性质就能得出,且与教材图5-15相似。这一形式,较易理解。需要时再化为电压源形式。这是本教材的处理方式,希望保持一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论