




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
空间直角坐标系,一、空间点的直角坐标,二、空间两点间的距离,空间直角坐标系,坐标面、,卦限、,点的坐标,距离公式,一、空间点的直角坐标,O,过空间一个定点 O,作三条互相垂直 的数轴,它们都以 O为原点且一般具有 相同的长度单位它 们的正向通常符合右 手规则这样的三条 坐标轴就组成了一个 空间直角坐标系,三条坐标轴中的任意两 条可以确定一个平面,这样 定出的三个平面统称为坐标 面x轴及y轴所确定的坐标 面叫做 xOy面,另两个坐标面是 yOz 面和zOx面.,坐标面:,三条坐标轴中的任意两 条可以确定一个平面,这样 定出的三个平面统称为坐标 面x轴及y轴所确定的坐标 面叫做 xOy面,另两个坐标面是 yOz 面和zOx面.,坐标面:,第一卦限,卦 限:,三个坐标面把 空间分成八个部分, 每一部分叫做卦限,第二卦限,卦 限:,第三卦限,卦 限:,第四卦限,卦 限:,第五卦限,卦 限:,第六卦限,卦 限:,第七卦限,卦 限:,第八卦限,卦 限:,点的坐标:,设 M 为空间一已知点过 点 M 作三个平面分别垂直于 x 轴、y 轴和 z 轴,三个平面在 x 轴、y 轴和 z 轴的交点依次为 P、Q、R,在 x 轴、y 轴和 z 轴 上的坐标依次为x、y、z,我们 称这组数为点M的坐标,并把 x、y、z分别称为点M的横坐标、 纵坐标、竖坐标坐标为x、y、 z 的点M 记为M(x,y,z),P,R,x,z,y,M,Q,3.3空间两点间的距离公式,问题1:长方体的对角线是长方体中的那一条线段? 问题2:怎样测量长方体的对角线的长? 问题3:已知长方体的长、宽、高分别是a、 b、c,则对角线的长,问题4:给出空间两点A(x1,y1,z1),P(x2,y2,z2) 可否类比得到一个距离公式?,1、设O(0,0,0),P(x0,y0,z0) 则,二、空间两点间的距离,设M 1(x 1,y 1,z 1)、M 2(x 2,y 2,z 2)为空间两点,与x 轴平行的边的边长为|x 2x 1|,,作一个以M 1和M 2为对角线顶点的长方体,使其三个相邻的面分别平行于三个坐标面,P,Q,x 2,x 1,与y 轴平行的边的边长为|y 2y 1|,,y 2,y 1,二、空间两点间的距离,设M 1(x 1,y 1,z 1)、M 2(x 2,y 2,z 2)为空间两点,与x 轴平行的边的边长为|x 2x 1|,,作一个以M 1和M 2为对角线顶点的长方体,使其三个相邻的面分别平行于三个坐标面,与z 轴平行的边的边长为|z 2z 1|,z 2,z 1,与y 轴平行的边的边长为|y 2y 1|,,二、空间两点间的距离,设M 1(x 1,y 1,z 1)、M 2(x 2,y 2,z 2)为空间两点,与x 轴平行的边的边长为|x 2x 1|,,作一个以M 1和M 2为对角线顶点的长方体,使其三个相邻的面分别平行于三个坐标面,因为,| M1M2 | 2,= | M1Q | 2 + | M2Q | 2,= | M1P | 2 + | PQ | 2 + | M2Q | 2 ,d = | M1M2 | =,所以,与z 轴平行的边的边长为|z 2z 1|,与y 轴平行的边的边长为|y 2y 1|,,设M 1(x 1,y 1,z 1)、M 2(x 2,y 2,z 2)为空间两点,与x 轴平行的边的边长为|x 2x 1|,,作一个以M 1和M 2为对角线顶点的长方体,使其三个相邻的面分别平行于三个坐标面,例1 求证以M 1(4,3,1)、M 2(7,1,2)、M 3(5,2,3)三点为顶点的三角形是一个等腰三角形 解 因为 | M 1M 2| 2(74) 2(13) 2(21) 214, | M 2M 3| 2(57) 2(21) 2(32) 26, | M 1M 3| 2(54) 2(23) 2(31) 26, 所以| M 2M 3| | M 1M 3|,即DM 1M 2M 3为等腰三角形,例2 在z轴上求与两点A(4, 1, 7)和B(3, 5,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小儿红细胞葡萄糖-6-磷酸脱氢酶缺乏症的临床护理
- 眼眶爆裂性骨折的临床护理
- 【房地产】山水芙蓉国际新城-主题宣传推广创意案
- 诱导透析治疗
- 护理美学美育
- 肝胆护理年终总结
- 新质生产力会议
- 原发性十二指肠恶性淋巴瘤的临床护理
- 感染科院感管理规范实施要点
- 2025届河北省保定市莲池区十三中学七下数学期末质量检测模拟试题含解析
- 深度解剖华为虚拟股权激励方案最全版含持股比例
- 医学康复治疗技术作业治疗课件
- 儿科品管圈成果汇报提高手腕带佩戴率课件
- 住院患者健康教育计划执行单
- 中考历史 (世界现代史)
- 容重器测量结果的不确定度评定
- 用户满意度调查表(产品与服务类)
- 电子样册三菱电机水源机wywr2
- 小学英语自然拼读课件
- 七年级第一节语文课(课堂PPT)
- 配网工程管理流程及注意事项
评论
0/150
提交评论