




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
有限单元法II,2005级硕士生课程,同济大学土木学院桥梁工程系,第五章 弹性力学问题有限单元法的一般原理和表达格式,本章中,我们将通过弹性力学变分原理建立弹性力学问题有限单元法的表达格式。最小位能原理的未知场变量是位移,以结点位移为基本未知量、并基于最小位能原理建立的有限单元。 我们将于平面问题3结点三角形单元为重点,对建立有限元求解方程的原理和步骤进行讨论,并进而引出广义坐标有限单元法的一般格式。 对于除了3结点三角形而外的单元,如何通过广义坐标导出单元的插值函数也进行讨论,特别是引入了自然坐标(对于三角形单元和四面体单元分别是面积坐标和体积坐标)的概念,这对今后研究和建立各类形式的单元是非常有用的。 作为一种数值方法,有限元解的收敛性和精度估计无疑是一个十分重要的问题,本章也简要讨论解的收敛准则和精度估计。,5.1 平面问题3结点三角形单元的有限元格式,由于三角形单元对复杂边界有较强的适应能力,因此很容易将一个二维域离散成有限个三角形单元,如下图所示。,5.1.1 单元位移模式及插值函数,典型的3结点三角形单元结点编码为i、j、m,以逆时针方向编码为正向。每个结点有2个位移分量,如上图右所示,因此每个单元有6个结点位移即6个结点自由度。,在有限单元法中单元的位移模式一般采用多项式作为近视函数,因此多项式运算简便,并且随着项数的增多,可以逼近任何一段光滑的函数曲线。多项式的选取由低次到高次。 3结点三角形单元位移模式选取一次多项式:,单元内的位移是坐标x,y的线性函数。16是待定系数,称之为广义坐标。6个广义坐标可由单元的6个结点位移来表示。把上式代入代入单元3个结点i、j、m在x方向的位移ui,可得:,(51),解(51)式可以得到广义坐标由结点位移表示的表达式。 系数行列式是:,A是三角形单元的面积,解的广义坐标13为:,(a),(b),在式(a)和式(b)中:,上式中的单元面积A可通过系数行列式D求得:,其中:,(52),把(52)式写成矩阵形式有:,插值函数具有如下性质:,(1)在结点上插值函数的值有:,(2)在单元中任一点各插值函数之和应等一1,即:,因为若单元发生刚体位移,如x方向有刚体位移u0,则单元内(包括结点上到处应有位移u0,即uiujumu0,又由(52)式有:),(3)对于现在的单元,插值函数是线性的,在单元内部及单元的边界上位移也是线性的,可由结点上的位移值唯一地确定。由于相邻单元公共结点的结点位移是相等的,因此保证了相邻单元在公共边界上位移的连续性。,(2) 应变矩阵和应力矩阵,确定了单元位移后,可以方便地利用几何方程和物理方程求得单元的应变和应力,因此有:,代入式:,得到B:,单元应力可以根据物理方程求得:,其中:,S称为应力矩阵,将平面应力或平面应变的弹性矩阵代入,可以得到计算平面应力或平面应变问题的单元应力矩阵。S的分块矩阵为:,5.1.2 利用最小势能原理建立有限元方程,最小势能原理的泛函总位能p的表达式,在平面问题中采用矩阵表达形式为:,对于离散模型,系统势能是各单元势能之和,利用单元的位移表达式代入上式有:,将以上各式代入泛函表达式,离散形式的总位能可表示为:,所以有:,这样我们得到有限元的求解方程是:,5.1.3 单元刚度矩阵,由上面定义的单元刚度矩阵,由于应变矩阵B对于3结点三角形单元是常量阵,因此有:,其中:,5.1.4 单元等效结点载荷列阵,1、均质等厚单元的自重,5.1.5 结构刚度矩阵和结构结点载荷列阵的集成,上面求出了结构刚度矩阵和结构结点载荷列阵由单元刚度矩阵和单元等效结点载荷列阵集成的表达式,集成是通过单元结点转换矩阵G实现的。,5.1.6 结构刚度矩阵的特点,由于单元刚度矩阵是对称和奇异的,由它们集成的结构刚度矩阵K也是对称和奇异的,也就是说结构至少需要给出能限制刚体位移的约束条件才能消除K的奇异性,以便求解结点位移。,5.1.7 引入位移边界条件,(1)直接代入法,在总方程组中将已知结点位移的自由度消去,得到一组修正方程,用以求解其他待定的结点位移。其原理是按结点位移已知和待定重新组合方程。,可以采用以下方法引入强制边界条件:,由上式可得:,(2)对角元素改1法,(3)对角元素乘大数法,引入位移边界条件后,消除了K矩阵的奇异性,可以求得结构的结点位移a,然后回到单元中,用已知单元的结点位移,通过几何方程和物理方程,就可求得单元的应变和应力。,5.2.1 选
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鱼类育种课件教学
- 电路导纳知识培训课件
- 电解电容销售知识培训课件
- 电脑硬件基础知识培训课件
- 高考直通车课件听
- 电脑文员知识培训课件
- 基建输变电工程总承包合同
- 电脑听课件多窗口操作
- 电能表计安装及维护课件
- nasmcpt考试试题及答案
- 加油、加气、充电综合站项目可行性研究报告
- 2025年科研项目经理专业知识考试题目答案解析
- 2025广东肇庆市怀集县卫生事业单位招聘102人笔试模拟试题及答案解析
- 青马考试题目及答案
- 2024-2025学年广东省深圳市南山区四年级(下)期末数学试卷
- 2025秋数学(新)人教五年级(上)第1课时 小数乘整数
- 数据标注教学课件
- 2024年全国工会财务知识大赛备赛试题库500(含答案)
- 2025年军事专业基础知识考核试题及答案
- 《采购4 0 采购系统升级 降本 增效实用指南 第2版 》读书笔记思维导图PPT模板下载
- Q∕SY 1866-2016 成品油交接计量规范
评论
0/150
提交评论