




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
12 排列与组合,计数原理,1.2.3 排列组合的综合问题,利用排列数公式和组合数公式解决排列、组合的综合问题,基础梳理,1排列、组合都是研究事物在某种给定的模式下所有可能的配置的数目问题它们之间的主要区别在于是否要考虑选出元素的先后顺序,不需要考虑顺序的是组合问题,需要考虑顺序的是排列问题排列是在组合的基础上对入选的元素进行排队因此,分析解决排列组合问题的基本思维是“先组,后排” 2解排列组合的应用题,要注意四点: (1)仔细审题,判断是组合问题还是排列问题;要按元素的性质分类,按事件发生的过程进行分步,(2)深入分析、严密周详,注意分清是乘还是加,既不少也不多,辩证思维,多角度分析,全面考虑这不仅有助于提高逻辑推理能力,也尽可能地避免出错 (3)对于附有条件的比较复杂的排列组合应用题,要周密分析,设计出合理的方案,把复杂问题分解成若干简单的基本问题后应用分类计数原理或分步计数原理来解决 (4)由于排列组合问题的答案一般数目较大,不易直接验证,因此在检查结果时,应着重检查所设计的解决问题的方案是否完备,有无重复或遗漏,也可采用多种不同的方法求解,看看是否相同在对排列组合问题分类时,分类标准应统一,否则易出现遗漏或重复,自测自评,1. (2012年深中期末)值域为2,5,10,其对应关系为y=x2+1的函数的个数为() A. 1个 B. 27个 C. 39个 D. 8个,B,解析:分别由x2+1=2,x2+1=5,x2+1=10解得x=1,x=2,x=3.由函数的定义,定义域中元素的选取分四种情况: 取三个元素:有C12C12C12=8(种)取四个元素:先从1,2,3三组中选取一组C13,再从剩下的两组中选两个元素C12C12,故共有C13C12C12=12(种);取五个元素:C56=6(种);取六个元素:1种. 由分类计数原理,共有8+12+6+1=27(种).,26名运动员站在6条跑道上准备参加比赛,跑道中甲不能站在第一跑道也不能站在第二跑道,乙必须站在第五跑道或第六跑道,则不同的排法种数共有_ 3从集合O,P,Q,R,S与0,1,2,3,4,5,6,7,8,9中各任取2个元素排成一排(字母和数字均不能重复)每排中字母O,Q和数字0至多只出现一个的不同排法种数是_(用数字作答),8 424,144,排列组合中特殊元素和特殊位置,从1到9的九个数字中取三个偶数和四个奇数 (1)能组成多少个没有重复数字的七位数? (2)在(1)中的七位数中,三个偶数排在一起的有几个? (3)在(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个? (4)在(1)中的七位数中,任意两个偶数都不相邻的七位数有几个?,跟踪练习,1用0到9这十个数字, (1)可以组成多少个没有重复数字的四位数?在这些四位数中,奇数有多少个? (2)可以组成多少个只含有2个相同数字的三位数?,解析:(1)可以组成9 4 536个四位数 适合题意的四位奇数共有 2240(个) (2)0到9这10个数字构成的三位数共有900个,分为三类:,第一类:三位数字全相同,如111,222,999,共9个; 第二类:三位数字全不同,共648个; 第三类:由间接法可求出,只含有2个相同数字的三位数,共有9009648243(个),有6本不同的书 (1)甲、乙、丙3人每人2本,有多少种不同的分法? (2)分成3堆,每堆2本,有多少种不同的分堆方法? (3)分成3堆,一堆1本,一堆2本,一堆3本,有多少种不同的分堆方法? (4)分给甲、乙、丙3人,一人1本,一人2本,一人3本,有多少种不同的分配方法? (5)分成3堆,有2堆各1本,另一堆4本,有多少种不同的分堆方法? (6)摆在3层书架上,每层2本,有多少种不同的摆法?,分组与分配问题,跟踪练习,2有4个不同的球,4个不同的盒子,把球全部放入盒子内 (1)共有几种放法? (2)恰有1个空盒,有几种放法? (3)恰有2个盒子不放球,有几种放法?,车间有11名工人,其中5名男工是钳工,4名女工是车工,另外2名老师傅既能当车工又能当钳工现在要在这11名工人里选派4名钳工,4名车工修理一台机床,有多少种选派方法,多面手问题,跟踪练习,3赛艇运动员10人,3人会划右舷,2人会划左舷,其余5人两舷都能划现要从中选6人上艇,平均分配在两舷上划桨,有多少种不同的选法?,有5个同学排队照相,求: (1)甲、乙2个同学必须相邻的排法有多少种? (2)甲、乙、丙3个同学互不相邻的排法有多少种? (3)乙不能站在甲前面,丙不能站在乙前面的排法有多少种? (4)甲不站在中间位置,乙不站在两端两个位置的排法有多少种? 分析:本题是有限制条件的排列问题,它们分别属于相邻问题、不相邻问题、顺序一定问题等模型,应采取相应的捆绑法、插空法、排除法等求解,点评:(1)有约束条件的排列问题的基本类型: 某些元素不能排在或必须排在某一位置; 某些元素要求相离(即不能相邻); 某些元素要求相邻(即必须相邻) (2)解题的基本方法是:有特殊元素或特殊位置,通常先排特殊元素或特殊位置,称为“优先处理元素(位置)法”;某些元素要求不相邻排列时,可先排列其他元素,再将这些不相邻元素插入“空档”,称为“插空法”;某些元素要求必须相邻时,可以先将这些元素作为一个整体元素,与其他元素排列后,再考虑整体内部的排序,称为“捆绑法”,1有甲、乙、丙三项任务,甲需2人承担,乙、丙各只需一人承担若从10个人中选出4人承担这三项任务,则不同的选法有( ) A1 260种 B2 025种 C2 520种 D5 040种,C,2从男生7人和女生5人中选出4人进行乒乓球混双比赛,则不同的种数为( ) A420 B210 C840 D105,A,3在五张卡片上分别写有2,3,4,5,6这5个数字,其中6可以当9使用,从中任取3张,组成三位数,这样的三位数个数为( ) A60 B70 C96 D136,C,44个不同的小球全部放入3个不同的盒子中,使每个盒子都不空,则不同放法的种数为( ),B,5将含甲、乙在内的9人平均分成三组,甲、乙分在同一组,则不同分组方法的种数为( ) A70 B140 C280 D840 6A,B,C三台不同型号的数控车床和甲、乙、丙、丁四名操作员其中甲、乙会操作这三种车床,丙不能操作车床C,丁只会操作车床A.今从四人选三个人分别去操作以上车床,不同的选派方案共有_种 7方程xyz12的非负整数解的个数为_,A,8,91,8已知平面,在内有4个点,在内有6个点 (1)过这10个点中的3点作一平面,最多可作多少个不同的平面? (2)以这些点为顶点,最多可作多少个三棱锥? (3)上述三棱锥中最多可以有多少个不同的体积?,点评:(1)要特别注意不要忘记平面,; (2)图形个数问题一般是组合问题,要注意共点、共线、共面等特殊情况,避免多算或少算,9有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列条件的选法数: (1)有女生但人数必须少于男生; (2)某女生一定担任语文科代表; (3)某男生必须包括在内,但不担任数学科代表; (4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表,分析:“先选后排”,注意“选”和“不选”应优先考虑,10七个人按下列要求排成一纵队: (1)A,B两人须排两头; (2)A,B,C三人相邻; (3)A,B,C三人两两互不相邻; (4)A,B,C三人的前后顺序一定 以上四种要求分别有多少种不同的排法?,1涂色问题 (1)图形涂色问题是利用两个原理处理的一种对能力要求较高的问题,需要特别关注图形的特征,有多少块,用多少种颜色 涂色问题一般是先分步后分类 (2)若图形不很规则,往往从某一块出发,进行分步涂色,从而选用分步计数原理;若图形具有一定的对称性,那么先对涂色方案进行分类,每一类再进行分步,2常见的解题策略 (1)特殊元素优先安排的策略; (2)合理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家政服务合同协议书
- Unit 2 单元整体说课稿 2023-2024学年人教版八年级英语下册
- 关于读书活动总结(集合15篇)
- 2025山东菏泽高新城市建设投资有限公司招聘考试12人笔试题库及答案详解
- 抵押物品抵押管理与风险控制合同
- 建设用地地勘合同示范文本(工业用地)
- 出差人员安全保障及费用报销合同范本
- 文化创意担保借款合同示范文本
- 事业单位合同签订风险评估与防范措施合同
- 《国有企业改革中员工转岗劳务派遣专项合同》
- 农村处理矛盾纠纷课件
- 厂房搬迁管理办法
- 保险学考试题(附答案)
- 中药处方点评管理办法
- 国企纪法教育实施路径
- 药品发放登记管理制度
- 临床科室科研管理制度
- 铁艺围栏采购合同
- 中国皮肤基底细胞癌诊疗指南2023
- 卫星通信技术在电力行业中的应用场景分析
- 黄旭华人物介绍
评论
0/150
提交评论