




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.4.1抛物线的标准方程,抛物线定义,平面内到一个定点F和一条定直线L(F不在L上)距离相等的点的轨迹叫做抛物线,点F称为焦点,直线L称为准线,思,考,求抛物线方程如何建立直角坐标系呢?,过F作直线FN 直线L,垂足为N。以直线NF为x轴,线段NF的垂直平分线为y轴,建立如下图所示的直角坐标系xOy. 设焦点F到准线L的距离为p,则F(p/2,0).又设P(x,y),作 ,垂足为H,则由定义知PF=PH,得,将上式两边平方并化简,得,由上述过程可知,抛物线上的点(x,y)都满足上面这个方程,并且满足上面这个方程的点都在已知抛物线上 这样就得到所求的抛物线的方程,它的焦点为 ,准线为直线,探,究,若抛物线的开口分别朝左、朝上、朝下,你能根据上述办法求出它的标准方程吗?,( - , 0 ),(0 , ),( 0 , ),( ,0 ),x=-,x=,y=-,y=,向 右,向 左,向 上,向 下,相同点:(1)原点在抛物线上; (2)对称轴为坐标轴; (3)焦点的非零坐标是一次项系数的1/4; (4)准线与对称轴垂直且垂足与焦点关于原点对称; (5)P是指代表焦点到准线的距离(称p为焦参数) p0,发现规律,焦点看一次项,符号决定开口方向 一次项变量为x(或y),则焦点在x (或y)轴;若系数为正,则焦点在正半轴上,系数为负,则焦点在负半轴上; 焦点在x(或y)轴的正半轴上,开口向右(向上),焦点在x(或y)轴的负半轴上,开口向左(向下)。,发现规律,例1.求抛物线 的焦点坐标和准线方程,解:由题意知2p=4,p=2, 所以抛物线的焦点坐标为(1,0),准线方程为x=-1,1.写出下列抛物线的焦点坐标和准线方程,2.抛物线 的焦点坐标是( ),A.(1/2,0) B.(1/8,0) C.(0,1/2) D.(0,1/8),D,例2求经过P(-2,-4)的抛物线的标准方程,解:因为点P在第三象限,所以满足条件的抛物线的标准方程有两种情形,即:,将p点坐标分别代入上述两个方程,解得,因此,满足条件的抛物线有两条,它们的标准方程分别为:,过点(1,-2)的抛物线的标准方程是( ),C,沙场练兵: 1.已知抛物线的焦点坐标是F(0,2),则它的标准方程是_。 2.抛物线 的准线是y=2,则实数a的值为_。 3.求适合下列条件的抛物线的标准方程 (1)焦点为(6,0); (2)准线方程为y=2/3; (3)焦点到准线的距离为5.,-8,抛物线定义,生活中的事物,抛物线的标准方程,求解简单的抛物线方程,蓦然回首:,课堂小结, 抛物线的定义、焦点、准线、标准方程等基本知识及其相互
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年薄膜包衣粉合作协议书
- 自行车租赁服务品牌建设考核试卷
- 氮肥施用的农业管理策略考核试卷
- 新媒体广告创意与设计
- 2025年耐高温滤料项目合作计划书
- 2025年同位素分离装置项目发展计划
- 新时代教师思想教育体系建设
- 2025年一级建造师之一建港口与航道工程实务真题练习试卷A卷附答案
- 2025年高通量试验反应堆及配套产品合作协议书
- 2025年隔音降噪设备:隔音吸声材料合作协议书
- 2025物业管理服务承包合同范本
- 企业所得税课件
- 2025年高考政治核心知识总结
- 2025广西中马钦州产业园区投资控股集团限公司招聘49人易考易错模拟试题(共500题)试卷后附参考答案
- 工程过账协议合同协议
- 托管中心晚辅老师培训
- 兼职顾问服务合同范本
- 人教版(新教材)高中物理选择性必修2教学设计2:2 2 法拉第电磁感应定律教案
- 2024-2025学年人教版数学八年级下册期中押题重难点检测卷(含答案)
- 广西地方公路养护工程预算定额
- 《中式美食鉴赏》课件
评论
0/150
提交评论