




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
11.2 三角形全等的判定(三),三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”)。,在ABC和 DEF中, ABC DEF(SSS),用符号语言表达为:,三角形全等判定方法1,三角形全等判定方法2,用符号语言表达为:,在ABC与DEF中,ABCDEF(SAS),两边和它们的夹角对应相等的两个三角形全等。(可以简写成“边角边”或“SAS”),F,E,D,C,B,A,A,B,D,A,B,C,SSA不能判定全等,1.若AB=AC,则添加一个什么条件可得ABD ACD?,ABD ACD,AB=AC,A,B,D,C,BAD= CAD,S,A,S,考考你,AD=AD,BD=CD,S,2.如图,要证ACB ADB ,至少选用哪些条件可,A,B,C,D,ACB ADB,S,A,S,证得ACB ADB,AB=AB,CAB= DAB,AC=AD,S,BC=BD,?,继续探讨三角形全等的条件:,两角一边,思考:已知一个三角形的两个角和一条边,那么两个角 与这条边的位置上有几种可能性呢?,A,B,C,A,B,C,图1,图2,在图1中, 边AB是A与B的夹边,,在图2中, 边BC是A的对边,,我们称这种位置关系为两角夹边,我们称这种位置关系为两角及其中一角的对边。,观察下图中的ABC,画一个A B C ,使A B =AB , A = A, B = B,结论:两角及夹边对应相等的两个三角形全等(ASA).,探索,?,观察:A B C 与 ABC 全等吗?怎么验证?,画法: 1.画 A B =AB;,2.在A B 的同旁画DA B = A ,EB A = B, A D、B E交于点C,A,E,D,C,B,思考:这两个三角形全等是满足哪三个条件?,如何用符号语言来表达呢?,证明:在ABC与A B C 中,A=A AB=A B,ABCABC(ASA),A,C,B,B=B,两角及夹边对应相等的两个三角形全等(ASA).,在ABC和DEF中, A=D, B=E,BC=EF, ABC和DEF全等吗?为什么?,A,C,B,E,D,F,探索,分析:能否转化为ASA?,证明: A=D, B=E(已知),C=F(三角形内角和定理),B=E,在ABC和DEF中,BC=EF,C=F,ABCDEF(ASA),你能从上题中得到什么结论?,两角及一角的对边对应相等的两个三角形全等(AAS)。,如何用符号语言来表达呢?,证明:在ABC与A B C 中,A=A,ABCABC(AAS),A,C,B,B=B,两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。,两角和其中一角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”,(ASA),归纳,下列条件能否判定ABCDEF. (1)A=E AB=EF B=D (2)A=D AB=DE B=E,试一试,请先画图试试看,如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗? 如果可以,带哪块去合适? 你能说明其中理由吗?,解决玻璃问题,利用“角边角定理”可知,带B 块去,可以配到一个与原来全等的三角形玻璃。,C,B,E,A,D,考考你,1、如图,已知AB=DE, A =D, ,B=E,则 ABC DEF的理由是:,2、如图,已知AB=DE ,A=D,,C=F,则 ABC DEF的理由是:,角边角(ASA),角角边(AAS),例1 、如图 ,AB=AC,B=C,那么ABE和ACD全等吗?为什么?,证明: 在ABE与ACD中 B=C (已知) AB=AC (已知) A= A (公共角) ABE ACD (ASA),1.如图,AD=AE,B=C,那么BE和CD相等么?为什么?,变一变,BE=CD,你还能得出其他 什么结论?,O,例2. 如图,O是AB的中点, = , 与 全等吗? 为什么?,两角和夹边对应相等,A,B,C,D,O,如图:已知ABC=DCB,3=4,求证: (1)ABCDCB。 (2)1=2,例3,练习1 已知:如图,AB=A C ,A=A,B=C 求证:ABE A CD,A=A 已知 AB=AC 已知 B=C 已知,ABE ACD ASA,ABE ACD,1、如图:已知ABDE,ACDF,BE=CF。求证:ABCDEF。,考考你,证明: BE=CF(已知),BC=EF(等式性质),B=E,在ABC和DEF中,BC=EF,C=F,ABCDEF(ASA), ABDE ACDF (已知), B=DEF , ACB=F,判定三角形全等 你有哪些方法?,(ASA),(AAS),(SAS),(SSS),A,B,C,D,E,F,1、如图ACB=DFE,BC=EF,那么应补充一个条件 - ,才能使ABCDEF (写出一个即可)。,B=E,或A=D,或 AC=DF,你能吗?,(ASA),(AAS),(SAS),AB=DE可以吗?,ABDE,在ABC和DEF中, ABCDEF(ASA),有两角和它们夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)。,用符号语言表达为:,F,E,D,C,B,A,三角形全等判定方法3,思考:在ABC和DFE中,当A=D , C=F和AB=DE时,能否得到 ABCDFE?,三角形全等判定方法4,有两角和其中一个角的对边对应相等的两个三角形全等(可以 简写成“角边角”或“AAS”)。,小结,(1) 两角和它们的夹边对应相等的两个三角形全等.,简写成“角边角”或“ASA”.,(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 啤酒酿造行业的绿色工厂设计与建设
- 抗寒交通安全设施材料对比分析报告
- 2025年工业互联网NFV技术推动工业设备智能化生产流程优化实践报告
- 面向2025年的文化创意产业园区品牌策略与区域产业融合报告
- 2025年建筑行业农民工权益保障与用工模式创新:跨界融合与产业链拓展报告
- 2025年消费与零售:家居用品行业市场分析及消费者偏好研究
- 私募股权基金2025年热点投资领域洞察:行业退出策略与投资风险
- 钢结构工程合同协议书范本
- 2025年机械制造企业服务化转型中的服务型企业品牌建设与传播报告
- 中医全科主治试题及答案
- 设计高效的污泥综合利用余热锅炉
- 静脉输血的考试题及答案
- 水表检定员考试题及答案
- 中医基础理论课件体质学说
- 神经重症气管切开患者气道功能康复与管理专家共识
- 培训课件医院感染暴发应急处置预案(院感科)
- 团队赋能培训
- 2025年酒店前台年度工作计划
- 2024-2025学年山东省青岛市高二上学期期中考试数学检测试卷(附解析)
- JJF(陕) 104-2023 裂隙灯显微镜校准规范
- 多模态大语言模型领域进展分享
评论
0/150
提交评论