高二数学互斥事件有一个发生的概率3.ppt_第1页
高二数学互斥事件有一个发生的概率3.ppt_第2页
高二数学互斥事件有一个发生的概率3.ppt_第3页
高二数学互斥事件有一个发生的概率3.ppt_第4页
高二数学互斥事件有一个发生的概率3.ppt_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

11.2 互斥事件有一个 发生的概率(3),一、复习,互斥是对立的 条件.,.互斥事件:不可能同时发生的两个事件叫做互斥 事件.,对立事件:其中必有一个发生的互斥事件叫做对立事件.,必要不充分,.和事件A +B :表示事件A、B中至少有一个发生的事件.,(1)当A、B是任意事件时:,(2)当A、B是互斥事件时:,(3)当A、B是对立事件时:,.求法:,(1)直接法:化成求一些彼此互斥事件的概率的和;,(2)间接法:求对立事件的概率.,例1.在一只袋子中装有7个红玻璃球,3个绿玻璃球。从中无放回地任意抽取两次,每次只取一只。试求: (1)取得两个红球的概率; (2)取得两个绿球的概率; (3)取得两个同颜色的球的概率; (4)至少取得一个红球的概率。,解:从10个球中先后取2个,共有A102种不同取法。 (1)由于取得红球的情况有A72中,所以取得红球 的概率为,(2)取得两个绿球的概率为,例1.在一只袋子中装有7个红玻璃球,3个绿玻璃球。从中无放回地任意抽取两次,每次只取一只。试求: (1)取得两个红球的概率; (2)取得两个绿球的概率; (3)取得两个同颜色的球的概率; (4)至少取得一个红球的概率。,解:从10个球中先后取2个,共有A102种不同取法。,(3)由于 “取得两个红球”与 “取得两个绿球”是互斥事 件,取得两个同色球,只需两互斥事件有一个发生即 可。因而取得两同色球的概率为,例1.在一只袋子中装有7个红玻璃球,3个绿玻璃球。从中无放回地任意抽取两次,每次只取一只。试求: (1)取得两个红球的概率; (2)取得两个绿球的概率; (3)取得两个同颜色的球的概率; (4)至少取得一个红球的概率。,解:从10个球中先后取2个,共有A102种不同取法。,(4)由于事件C“至少取得一个红球”与事件B“取得两个 绿球”是对立事件,因而至少取得一个红球的概率为,例2.袋中装有红、黄、白 3 种颜色的球各1只,从中每次任取1只,有放回地抽取 3次,求: (1)3只全是红球的概率, (2)3只颜色全相同的概率, (3)3只颜色不全相同的概率, (4)3只颜色全不相同的概率 解:有放回地抽取3次,所有不同的抽取结果 总数为33: (1)3只全是红球的概率为,例2.袋中装有红、黄、白 3 种颜色的球各1只,从中每次任取1只,有放回地抽取 3次,求: (1)3只全是红球的概率, (2)3只颜色全相同的概率, (3)3只颜色不全相同的概率, (4)3只颜色全不相同的概率 解:有放回地抽取3次,所有不同的抽取结果 总数为33:,(2)3只颜色全相同的概率为,例2.袋中装有红、黄、白 3 种颜色的球各1只,从中每次任取1只,有放回地抽取 3次,求: (1)3只全是红球的概率, (2)3只颜色全相同的概率, (3)3只颜色不全相同的概率, (4)3只颜色全不相同的概率 解:有放回地抽取3次,所有不同的抽取结果 总数为33:,(3)“3只颜色不全相同”的对立事件为“三只颜色全 相同” 故“3只颜色不全相同”的概率为,例2.袋中装有红、黄、白 3 种颜色的球各1只,从中每次任取1只,有放回地抽取 3次,求: (1)3只全是红球的概率, (2)3只颜色全相同的概率, (3)3只颜色不全相同的概率, (4)3只颜色全不相同的概率 解:有放回地抽取3次,所有不同的抽取结果 总数为33:,例3。有4个红球,3个黄球,3个白球装在袋中,小球的形状、大小相同,从中任取两个小球,求取出两个同色球的概率是多少? 解:从10个小球中取出两个小球的不同取法数为C102 “从中取出两个红球”的不同取法数为C42,其概率为C42C102 “从中取出两个黄球”的不同取法数为C32,其概率为C32C102 “从中取出两个白球”的不同取法数为C32,其概率为C32C102 所以取出两个同色球的概率为: C42C102+C32C102+C32C102=,例4.在房间里有4个人求至少有两个人的生日是同一个月的概率.,因而至少有两人的生日是同一个月的概率为:,解:由于事件A“至少有两个人的生日是同一个月” 的对立事件是“任何两个人的生日都不同月”,例5.在放有5个红球、4个黑球、3个白球的袋中, 任意取出3个球,分别求出3个全是同色

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论