




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,你还能举出更多例子吗?,正多边形和圆,圆的内接正n边形 & 圆的外切正n边形,正多边形: 各边相等,各角也相等的多边形叫做正多边形。 正n边形: 如果一个正多边形有n条边,那么这个正多边形叫做正n边形。,三条边相等,三个角也相等(60度),四条边都相等,四个角也相等(90度),想一想: 菱形是正多边形吗?矩形是正多边形吗?为什么?,求证: 正五边形的对角线相等,类比联想,怎样找圆的内接正三角形?怎样找圆的外切正三角形?,怎样找圆的内接正方形?怎样找圆的外切正方形?,怎样找圆的内接正n边形?怎样找圆的外切正n边形?,把圆分成n(n3)等份: 依次连结各分点所得的多边形是这个圆的内接正多边形; 经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正多边形。,定理,证明:AB=BC=CD=DE=EA AB=BC=CD=DE=EA BCE=CDA=3AB 1=2 同理2=3=4=5 又顶点A、B、C、D、E都在O上, 五边形ABCDE是O的内接五边形。,1、判断题。 各边都相等的多边形是正多边形。 ( ) 一个圆有且只有一个内接正多边形。 ( ) 2、证明题。 求证:顺次连结正六边形 各边中点所得的多边形是 正六边形。,3、证明题。 求证:各边相等的圆内接多边形是正多边形,正多边形和圆,正n边形的外接圆 & 正n边形的内切圆,定理,把圆分成n(n3)等份: 依次连结各分点所得的多边形是这个圆的内接正n边形; 经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。,一个正多边形是否一定有外接圆和内切圆?,类比联想,正三角形 有没有外接圆和内切圆? 怎样作出这两个圆? 这两个圆有什么位置关系?,正方形 有没有外接圆和内切圆? 怎样作出这两个圆? 这两个圆有什么位置关系?,那么,正n边形呢?,定理,任何正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆。,正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距。正多边形各边所对的外接圆的圆心角叫做正多边形的中心角。正n边形的每个中心角都等于360/n。,正多边形的性质,正多边形是轴对称图形,正n边形有n条对称轴。 若n为偶数,则其为中心对称图形。,正多边形和圆,巩固练习,正多边形的性质,各边相等,各角相等 圆的内接正n边形的各个顶点把圆分成n等分 圆的外切正n边形的各边与圆的n个切点把圆分成n等分 每个正多边形都有一个内切圆和外接圆,这两个圆是同心圆,圆心就是正多边形的中心 正多边形都是轴对称图形,如果边数是偶数那么它还是中心对称图形 正n边形的中心角和它的每个外角都等于360/n,每个内角都等于(n-2)180/n 边数相同的正多边形相似,周长比、边长比、半径比、边心距比、对应对角线比都等于相似比,面积比等于相似比平方,求证:各边相等的圆内接多边形是正多边形。,求证:各角相等的圆外切多边形是正多边形。,思考: 各边相等的圆外切多边形是否是正多边形? 各角相等的圆内接多边形是否是正多边形?,练习,1、下列图形中:正五边形;等腰三角形;正八边形;正2n(n为自然数)边形;任意的平行四边形。是轴对称图形的有_,是中心对称图形的有_,既是中心对称图形,又是轴对称图形的有_。,2、两个正七边形的边心距之比为3:4,则它们的边长比为_,面积比为_,外接圆周长比是_,中心角度数比是_。,3:4,9:16,3:4,1:1,边数相同的两个正多边形相似,练习,练习,4、圆内接正五边形ABCDE中,对角线AC和BE相交于点M, (1)求AME的度数 (2)求证:ME=AB (3)求证:ME2=BEBM,5、如图,AD是O的直径,弦BC垂直平分OD,垂足为M。求证:ABC是正三角形。,由此你想到了尺规作图中作正三角形的方法了吗?,6、A、B、C在O上,且B在弧AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 营养品批发市场的数字化转型策略规划与执行考核试卷
- 2025年液位传感器项目发展计划
- 豆类食品加工技术创新案例解析考核试卷
- 球类产业新兴市场开拓与风险控制考核试卷
- 2025年非公路矿用车项目建议书
- 2025年超临界高温、高压汽轮发电机组合作协议书
- 2025年教师资格之中学化学学科知识与教学能力每日一练试卷B卷含答案
- 猫咪儿童课件
- 工业产品造型设计课件
- 狗的模板课件
- 2024年新疆泽普县事业单位公开招聘村务工作者笔试题带答案
- 《网络素养教育》课件
- 脊髓损伤病人的护理查房
- 2025年全国特种设备安全管理人员A证考试练习题库(300题)含答案
- 浙江省9 1高中联盟2024-2025学年高一下学期4月期中英语试卷(含解析含听力原文无音频)
- 人工智能在航空服务中的应用-全面剖析
- 2025-2030中国药食同源行业市场运行分析及市场前景预测研究报告
- 2023年高考生物试卷(福建)(答案卷)
- 2025-2030全球及中国戊二醛行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 财务指标分析试题及答案
- 乡村振兴面试题及答案
评论
0/150
提交评论