




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一阶微分方程,第二节,一、可分离变量方程 二、齐次型微分方程 三、可化为齐次型的微分方程 四、一阶线性微分方程 五、全微分方程,第十二章,判别:,P, Q 在某单连通域D内有连续一阶偏导数, 为全微分方程,则,求解步骤:,方法1 凑微分法;,方法2 利用积分与路径无关的条件.,1. 求原函数 u (x, y),2. 由 d u = 0 知通解为 u (x, y) = C .,五、全微分方程,则称,为全微分方程 ( 又叫做恰当方程 ) .,例1. 求解,解: 因为,故这是全微分方程.,则有,因此方程的通解为,例2. 求解,解:, 这是一个全微分方程 .,用凑微分法求通解.,将方程改写为,即,故原方程的通解为,或,积分因子法,思考: 如何解方程,这不是一个全微分方程 ,就化成例2 的方程 .,使,为全微分方程,在简单情况下, 可凭观察和经验根据微分倒推式得到,为原方程的积分因子.,但若在方程两边同乘,若存在连续可微函数,积分因子.,常用微分倒推公式:,积分因子不一定唯一 .,例如, 对,可取,例3. 求解,解: 分项组合得,即,选择积分因子,同乘方程两边 , 得,即,因此通解为,即,因 x = 0 也是方程的解 , 故 C 为任意常数 .,练习题 解方程,解法1 积分因子法.,原方程变形为,取积分因子,故通解为,此外, y = 0 也是方程的解.,解法2 化为齐次方程.,原方程变形为,积分得,将,代入 ,得通解,此外, y = 0 也是方程的解.,解法3 化为线性方程.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业创业基金贷款合同6篇
- 2025年土方运输合同3篇
- 简单石材购货合同范本5篇
- 泥塑彩绘合同范本
- 仓库转租租赁合同范本
- 砂石料款合同范本
- 协议分红股权合同范本
- 新艺人签约合同范本
- 南京特种气体销售合同3篇
- 秋季学期工作计划表怎么写(5篇)
- 以史为帆明方向+少年立志向未来+课件-2025-2026学年上学期主题班会
- 2025年医卫类病理学技术(中级)专业知识-专业实践能力参考题库含答案解析(5套试卷)
- 2025上海科技馆事业单位工作人员招聘10人笔试备考题库及答案解析
- 八年级语文上册期末考点专题17 新闻阅读(解析版)
- 【初二】【八年级】【道法】2025【秋】上学期开学第一课【统编版】(课件)
- 监狱消防安全应急预案
- 军事类面试题目及答案
- 2025巡护员考试题库及答案
- 产科专科护士结业汇报
- 2025年本币市场交易员资格考试题库带答案
- 《工程勘察设计收费标准》(2002年修订本)
评论
0/150
提交评论