




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8.3 域的基本概念与性质,定义 8.3.1 设(F, +, x)为一个交换环,若(F*, x)是群则称(F, +, x)为一个域。其中F*= F 0。 域也可以定义为:每个非零元都有逆元的整环。,例8.3.1 全体实数集合R、有理数集合Q以及复数集合C,在通常的加法和乘法运算下都构成域。 例8.3.2 试证(R2,)是一个域,其中运算和的定义如下: (a, b)(c, d) = (a+c, b+d) (a, b)(c, d) = (ac-bd, ad+bc) 由(R2, ) (C,+,x),和(C,+,x)是域即可知。,设 f 为从环(R, +, x )到(R, +, x )的同态,但 f 不是同构,则R是整环并不能确保R也是整环。 例如, f : Z Zn,mmn是整数环从(Z, +, x )到同余类环(Zn, +n, xn )的同态。Z是整环,而当n不是素数时, Zn不是整环。,例8.3.3 证明(Zp,+p,xp)是域当且仅当p是素数。 证. 若(Zp,+p,xp)是域,则(Zp,+p,xp)是整环,于是其特征 p是素数。 若 p是素数,mp Zp,由 p与m互素,故存在s, t Z,使得 sp + tm = 1 于是 spp +p tmp =1p 即 tp xp mp =1p 因此 mp 的逆元是tp 。,定理 8.3.1 有限整环(R, +, x )一定是域。 证. 只需证明非零元都有逆元即可。设 r0 R,r0 0 考虑映射 f : RR, r r0r 若r0r1 = r0r2,则由整环无零因子知 r1 = r2 故 f 是单射。 又 R为有限环,不妨设|R|=n,则单射 f 将R中 n个不同 元素映到R中n个不同元素,故 f 是满射。 于是存在 r1 R,使 f (r1) =1,即r0r1=1,故 r0有逆元 r1,定理 8.3.2 整环是域的充要条件是它不含真理想。 证. 充分性 设整环(R, +, x )不含真理想,只需证明非零元 r0都有逆元。设由r0 生成的R的主理想为(r0 ),因于r0 (r0 ),因此(r0 )0,于是(r0 ) = R,而整环R的(r0 )= r0r | r R 故存在 r1 R,使 r0r1=1,故 r0有逆元 r1 。 必要性 设I为域(R, +, x )的理想,I0,则存在非零元
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西安地质调查中心实习合同3篇
- 灯箱维修合同10篇
- 瓶装气企业安全培训课件
- DB14T 1953-2025 地面无机磨石材料应用技术规范
- 安全文明出行培训会议课件
- 分洪工程总体方案(3篇)
- 房屋工程方案小学作业(3篇)
- 广西嘉禾盛德金太阳再生资源有限公司汽车零部件再制造件表面处理工艺项目环境影响报告表
- 猫咪家族课件
- 猎人海力课件
- 2025年小学会计入职考试题库
- 2025-2026学年湘教版(2024)初中数学七年级上册教学计划及进度表
- 2025年版《手术室护理实践指南》练习题(附答案)
- 2025年全国《质量知识竞赛》题库及答案
- 大学开学第一课班会课件
- 外贸经理季度工作汇报
- 2025年全国计算机一级考试题库及答案
- 租赁公司复印机使用管理规定
- 2025年高考化学试卷真题完全解读(陕晋宁青卷)
- 蒙氏教育小班家长会课件
- 2025至2030高压去毛刺机行业市场占有率及投资前景评估规划报告
评论
0/150
提交评论