




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9.4 直线与圆、圆与圆的位置关系,-2-,-3-,知识梳理,双击自测,1.直线与圆的位置关系 直线与圆的位置关系有三种:相交、相切、相离.用来判断直线与圆的位置关系的方法主要有两种:,(2)几何法:利用圆心到直线的距离d和圆的半径r的大小关系: dr相离 .,-4-,知识梳理,双击自测,2.圆的切线方程 (1)若圆的方程为x2+y2=r2,点P(x0,y0)在圆上,则过点P且与圆x2+y2=r2相切的切线方程为x0x+y0y=r2 . 注:点P必须在圆x2+y2=r2上. (2)经过圆(x-a)2+(y-b)2=r2上点P(x0,y0)的切线方程为 (x0-a)(x-a)+(y0-b)(y-b)=r2 .,-5-,知识梳理,双击自测,3.圆的弦长的求法 (1)几何方法 运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成的直角三角形来计算. (2)代数方法 运用根与系数的关系及弦长公式,说明:运用圆的几何性质,求弦长或已知弦长求其他量的值时,采用几何方法直观、简便.,-6-,知识梳理,双击自测,4.圆与圆的位置关系,-7-,知识梳理,双击自测,1.平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是( ) A.2x+y+5=0或2x+y-5=0,答案,解析,-8-,知识梳理,双击自测,2.若直线l:x-y+m=0与圆C:x2+y2-4x-2y+1=0恒有公共点,则m的取值范围是( ),答案,解析,-9-,知识梳理,双击自测,3.过点A(3,5)作圆O:x2+y2-2x-4y+1=0的切线,则切线的方程为 .,答案,解析,-10-,知识梳理,双击自测,4.已知点M(1,0)是圆C:x2+y2-4x-2y=0内的一点,则过点M的最短弦所在直线的方程是 .,答案,解析,-11-,知识梳理,双击自测,5.(教材改编)圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦所在直线的方程为 ;公共弦长为 .,答案,解析,-12-,知识梳理,双击自测,自测点评 1.对于圆的切线问题,一定要区分好是过圆上一点的切线,还是过圆外一点的切线. 2.直线与圆、圆与圆位置关系判断有几何法和代数法两种. 3.利用圆这种几何图形的特殊性,多考虑用几何的方法解决位置关系、切线、弦长问题.,-13-,考点一,考点二,考点三,直线与圆的位置关系及应用(考点难度),【例1】 圆x2+y2-2x+4y=0与直线2tx-y-2-2t=0(tR)的位置关系为( ) A.相离 B.相切 C.相交 D.以上都有可能,答案,解析,-14-,考点一,考点二,考点三,方法总结1.判断直线与圆的位置关系时,首先要考虑几何法求解. 2.已知直线与圆的位置关系求参问题,一般要表示出圆心到直线的距离d及圆半径r,最后归结为解方程或不等式.,-15-,考点一,考点二,考点三,对点训练已知直线l:mx+y+3m- =0与圆x2+y2=12交于A,B两点,过点A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2 ,则|CD|= .,答案,解析,-16-,考点一,考点二,考点三,圆与圆的位置关系及其应用(考点难度),【例2】 已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1外切,则ab的最大值为( ),答案,解析,-17-,考点一,考点二,考点三,方法总结1.判断两圆的位置关系,通常是用几何法,从圆心距d与两圆半径长的和、差的关系入手.如果用代数法,从交点个数也就是方程组解的个数来判断,但有时不能得到准确结论. 2.两圆位置关系中的含参问题有时需要将问题进行化归,一般需要运用数形结合思想.,-18-,考点一,考点二,考点三,答案,解析,对点训练已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1相外切,则ab的最大值为( ),-19-,考点一,考点二,考点三,圆的切线与弦长问题(考点难度),【例3】 已知圆C:(x-1)2+(y+2)2=10,求满足下列条件的圆的切线方程. (1)与直线l1:x+y-4=0平行; (2)与直线l2:x-2y+4=0垂直; (3)过切点A(4,-1).,解:(1)设切线方程为x+y+b=0,-20-,考点一,考点二,考点三,(2)设切线方程为2x+y+m=0,过切点A(4,-1)的切线斜率为-3, 过切点A(4,-1)的切线方程为y+1=-3(x-4), 即3x+y-11=0.,方法总结1.处理圆的切线问题时要通过圆心到直线的距离等于半径建立关系解决问题. 2.处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形.,-21-,难点突破与圆有关的最值问题 高考中,与圆相关的问题中,除了圆的方程、位置关系等常规考查外,还经常以圆为载体考查范围、最值等问题,这类问题主要用数形结合、化归与转化等方法解决.,【典例】 (2017浙江嘉兴测试)由直线3x-4y+5=0上的一动点P向圆x2+y2-4x+2y+4=0引切线,则切线长的最小值为 .,解析:当直线上的点到圆心(2,-1)的距离最短时,切线长最小,此时,答题指导求切线长问题可以根据直线与圆相切、切点与圆心连线垂直切线的关系把切线长问题根据勾股定理转化为圆心到直线距离最小问题来解答.,-22-,对点训练已知P是直线l:3x-4y+11=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线,C是圆心,则四边形PACB面积的最小值是( ),答案,解析,-23-,高分策略1.直线与圆、圆与圆的位置关系问题,常考虑圆的几何性质,一般用几何法解决. 2.求直线与圆、圆与圆的交点问题,要联立直线与圆的方程,或联立圆与圆的方程来解决. 3.圆的切线问题: (1)过圆上一点的切线方程的求法是先求切点与圆心连线的斜率,再根据垂直关系求得切线斜率,最后通过直线方程的点斜式求得切线方程; (2)过圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司股东会会议管理制度
- 公司茶水间卫生管理制度
- 公司行政部文件管理制度
- 公司设备间使用管理制度
- 公司财务核算与管理制度
- 公司超期未发货管理制度
- 公司银行usbkey管理制度
- 写字楼办公时间管理制度
- 分公司上交文件管理制度
- 创业传媒公司日常管理制度
- 2025年湖北高考真题化学试题(解析版)
- 视觉设计心理学-洞察及研究
- 安徽宣城职业技术学院招聘笔试真题2024
- 2025西山煤电井下岗位高校毕业生招聘500人(山西)笔试参考题库附带答案详解
- 2025年江苏徐州市泉山数据有限公司招聘笔试冲刺题(带答案解析)
- 重庆市大渡口区2023-2024学年四年级下学期数学期末测试卷(含答案)
- 2025年高考全国一卷写作范文4篇
- 全省一体化政务平台AI大模型应用方案
- 医院负面清单管理制度
- 11.3 一元一次不等式组 课件 2024-2025学年人教版初中数学七年级下册
- DZ/T 0220-2006泥石流灾害防治工程勘查规范
评论
0/150
提交评论