




已阅读5页,还剩80页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第 4 章 概率分布,4.1 度量事件发生的可能性 3.2 随机变量概率分布 3.3 由正态分布导出的几个重要分布 3.4 样本统计量的概率分布,probability,2019-9-5,学习目标,度量事件发生的可能性概率 离散型概率分布 二项分布,泊松分布,超几何分布 连续型概率分布 正态分布 由正态分布导出的几个重要分布 c2-分布, t-分布, F-分布 样本统计量的概率分布,4.1 度量事件发生的可能性 概率是什么? 怎样获得概率? 怎样理解概率?,第 4 章 概率分布,2019-9-5,什么是概率? (probability),概率是对事件发生的可能性大小的度量 明天降水的概率是80%。这里的80%就是对降水这一事件发生的可能性大小的一种数值度量 你购买一只股票明天上涨的可能性是30%,这也是一个概率 一个介于0和1之间的一个值 事件A的概率记为P(A),2019-9-5,怎样获得概率?,重复试验获得概率 当试验的次数很多时,概率P(A)可以由所观察到的事件A发生次数(频数)的比例来逼近 在相同条件下,重复进行n次试验,事件A发生了m次,则事件A发生的概率可以写为,用类似的比例来逼近 一家餐馆将生存5年的概率,可以用已经生存了5年的类似餐馆所占的比例作为所求概率一个近似值,主观概率,2019-9-5,怎样理解概率?, 投掷一枚硬币,出现正面和反面的频率,随着投掷次数 n 的增大,出现正面和反面的频率稳定在1/2左右(注意:抛掷完成后,其结果就是一个数据,要么一定是正面,要么一定是反面,就不是概率问题了),4.2 随机变量的概率分布 4.2.1 随机变量及其概括性度量 4.2.2 离散型概率分布 4.2.3 连续型概率分布,第 4 章 概率分布,4.2.1 随机变量及其概括性度量,4.2 随机变量的概率分布,2019-9-5,什么是随机变量? (random variables),事先不知道会出现什么结果 投掷两枚硬币出现正面的数量 一座写字楼,每平方米的出租价格 一个消费者对某一特定品牌饮料的偏好 一般用 X,Y,Z 来表示 根据取值情况的不同分为离散型随机变量和连续型随机变量,2019-9-5,离散型随机变量 (discrete random variables),随机变量 X 取有限个值或所有取值都可以逐个列举出来 x1 , x2, 以确定的概率取这些不同的值 离散型随机变量的一些例子,2019-9-5,连续型随机变量 (continuous random variables),可以取一个或多个区间中任何值 所有可能取值不可以逐个列举出来,而是取数轴上某一区间内的任意点 连续型随机变量的一些例子,2019-9-5,离散型随机变量的期望值 (expected value),描述离散型随机变量取值的集中程度 离散型随机变量X的所有可能取值xi与其取相对应的概率 pi 乘积之和 记为 或E(X),计算公式为,2019-9-5,离散型随机变量的方差 (variance),随机变量X的每一个取值与期望值的离差平方和的数学期望,记为 2 或D(X) 描述离散型随机变量取值的分散程度 计算公式为 方差的平方根称为标准差,记为 或D(X),2019-9-5,离散型数学期望和方差 (例题分析),【例4-1】一家电脑配件供应商声称,他所提供的配件100个中拥有次品的个数及概率如下表。求该供应商次品数的数学期望和标准差,2019-9-5,连续型随机变量的期望和方差,连续型随机变量的期望值 方差,4.2.2 离散型概率分布,4.2 随机变量的概率分布,2019-9-5,离散型随机变量的概率分布,列出离散型随机变量X的所有可能取值 列出随机变量取这些值的概率 通常用下面的表格来表示,P(X =xi)=pi称为离散型随机变量的概率函数 pi0 ; 常用的有二项分布、泊松分布、超几何分布等,2019-9-5,二项试验 (Bernoulli试验),二项分布建立在Bernoulli试验基础上 贝努里试验满足下列条件 一次试验只有两个可能结果,即“成功”和“失败” “成功”是指我们感兴趣的某种特征 一次试验“成功”的概率为p ,失败的概率为q =1- p,且概率p对每次试验都是相同的 试验是相互独立的,并可以重复进行n次 在n次试验中,“成功”的次数对应一个离散型随机变量X,2019-9-5,二项分布 (Binomial distribution),重复进行 n 次试验,出现“成功”的次数的概率分布称为二项分布,记为XB(n,p) 设X为 n 次重复试验中出现成功的次数,X 取 x 的概率为,2019-9-5,二项分布 (期望值和方差),期望值 =E(X) = np 方差 2 =D(X) = npq,2019-9-5,二项分布 (例题分析),【例4-2】已知一批产品的次品率为4%,从中任意有放回地抽 取5个。求5个产品中 (1) 没有次品的概率是多少? (2) 恰好有1个次品的概率是多少? (3) 有3个以下次品的概率是多少?,2019-9-5,二项分布 (用Excel计算概率),第1步:在Excel表格界面,直接点击【fx】(插入函数)命令 第2步:在【选择类别】中点击【统计】,并在【选择函数】 中点击【BINOMDIST】,然后单击【确定】 第3步:在【Number_s】后填入试验成功次数(本例为1) 在【Trials】后填入总试验次数(本例为5) 在【Probability_s】后填入试验的成功概率(本例为 0.04) 在【Cumulative】后填入0(或FALSE),表示计算成 功次数恰好等于指定数值的概率(填入1或TRUE表示 计算成功次数小于或等于指定数值的累积概率值),计算二项分布的概率,Excel,2019-9-5,泊松分布 (Poisson distribution),1837年法国数学家泊松(D.Poisson,17811840)首次提出 用于描述在一指定时间范围内或在一定的长度、面积、体积之内每一事件出现次数的分布 泊松分布的例子 一定时间段内,某航空公司接到的订票电话数 一定时间内,到车站等候公共汽车的人数 一定路段内,路面出现大损坏的次数 一定时间段内,放射性物质放射的粒子数 一匹布上发现的疵点个数 一定页数的书刊上出现的错别字个数,2019-9-5,泊松分布 (概率分布函数), 给定的时间间隔、长度、面 积、体积内“成功”的平均数 e = 2.71828 x 给定的时间间隔、长度、面 积、体积内“成功”的次数,2019-9-5,泊松分布 (期望值和方差),期望值 E ( X ) = 方差 D ( X ) = ,2019-9-5,泊松分布 (例题分析),【例4-3】假定某航空公司预订票处平均每小时接到42次订票电话,那么10分钟内恰好接到6次电话的概率是多少?,解:设X=10分钟内航空公司预订票处接到的电话次数,2019-9-5,泊松分布 (用Excel计算概率),第1步:在Excel表格界面,直接点击【fx】(插入函数)命令 第2步:在【选择类别】中点击【统计】,并在【选择函数】 中点击【POISSON 】,然后单击【确定】 第3步:在【X】后填入事件出现的次数(本例为6) 在【Means】后填入泊松分布的均值(本例为7) 在【Cumulative】后填入0(或FALSE),表示计算成 功次数恰好等于指定数值的概率(填入1或TRUE表示 计算成功次数小于或等于指定数值的累积概率值),计算泊松分布的概率,Excel,2019-9-5,超几何分布 (hypergeometric distribution),采用不重复抽样,各次试验并不独立,成功的概率也互不相等 总体元素的数目N很小,或样本容量n相对于N来说较大时,样本中“成功”的次数则服从超几何概率分布 概率分布函数为,2019-9-5,超几何分布 (例题分析),【例4-4】假定有10支股票,其中有3支购买后可以获利,另外7支购买后将会亏损。如果你打算从10支股票中选择4支购买,但你并不知道哪3支是获利的,哪7支是亏损的。求 (1)有3支能获利的股票都被你选中的概率有多大? (2)3支可获利的股票中有2支被你选中的概率有多大?,解:设N=10,M=3,n=4,2019-9-5,超几何分布 (用Excel计算概率),第1步:在Excel表格界面,直接点击【fx】(插入函数)命令 第2步:在【选择类别】中点击【统计】,并在【选择函数】 中点击【 HYPGEOMDIST】,然后单击【确定】 第3步:在【Sample_s 】后填入样本中成功的次数x(本例为3) 在【Number_sample】后填入样本容量n(本例为4) 在【Population_s】后填入总体中成功的次数M(本例 为3) 在【Number_pop】后填入总体中的个体总数N (本例为10),计算超几何分布的概率,Excel,4.2.3 连续型概率分布,4.2 随机变量的概率分布,2019-9-5,连续型随机变量的概率分布,连续型随机变量可以取某一区间或整个实数轴上的任意一个值 它取任何一个特定的值的概率都等于0 不能列出每一个值及其相应的概率 通常研究它取某一区间值的概率 用概率密度函数的形式和分布函数的形式来描述,2019-9-5,常用连续型概率分布,2019-9-5,正态分布 (normal distribution),由C.F.高斯(Carl Friedrich Gauss,17771855)作为描述误差相对频数分布的模型而提出 描述连续型随机变量的最重要的分布 许多现象都可以由正态分布来描述 可用于近似离散型随机变量的分布 例如: 二项分布 经典统计推断的基础,2019-9-5,概率密度函数,f(x) = 随机变量 X 的频数 = 正态随机变量X的均值 = 正态随机变量X的方差 = 3.1415926; e = 2.71828 x = 随机变量的取值 (- x +),2019-9-5,正态分布函数的性质,图形是关于x=对称钟形曲线,且峰值在x= 处 均值和标准差一旦确定,分布的具体形式也惟一确定,不同参数正态分布构成一个完整的“正态分布族” 均值可取实数轴上的任意数值,决定正态曲线的具体位置;标准差决定曲线的“陡峭”或“扁平”程度。越大,正态曲线扁平;越小,正态曲线越高陡峭 当X的取值向横轴左右两个方向无限延伸时,曲线的两个尾端也无限渐近横轴,理论上永远不会与之相交 正态随机变量在特定区间上的取值概率由正态曲线下的面积给出,而且其曲线下的总面积等于1,2019-9-5, 和 对正态曲线的影响,2019-9-5,正态分布的概率,2019-9-5,标准正态分布 (standardize normal distribution),标准正态分布的概率密度函数,随机变量具有均值为0,标准差为1的正态分布 任何一个一般的正态分布,可通过下面的线性变换转化为标准正态分布,标准正态分布的分布函数,2019-9-5,正态分布 (用Excel计算正态分布的概率),第1步:在Excel表格界面中,点击“fx ”(插入函数)命令 第2步:在【选择类别】中点击【统计】,并在【选择函数】 中点击【NORMDIST】,然后单击【确定】 第3步:在【X】后输入正态分布函数计算的区间点(即x值) 在【Mean】后输入正态分布的均值 在【Standard_dev】后输入正态分布的标准差 在【Cumulative】后输入1(或TRUE)表示计算事件出 现次数小于或等于指定数值的累概率 单击【确定】,2019-9-5,正态分布 (计算标准正态分布的概率和反函数值),第1步:在Excel表格界面中,点击“fx ”(插入函数)命令 第2步:在【选择类别】中点击【统计】,并在【选择函数】中点击 【NORMSDIST】,单击【确定】 第3步:在【Z】后输入Z的值。单击【确定】 第1步:在Excel表格界面中,点击“fx ”(插入函数)命令 第2步:在【选择类别】中点击【统计】,并在【选择函数】中点击 【NORMSINV】,然后单击【确定】 第3步:在【Probability】后输入给定的概率值。单击【确定】,计算概率,计算z值,2019-9-5,正态分布 (例题分析),【例4-5】计算以下概率 (1) XN(50,102),求 和 (2) ZN(0,1),求 和 (3)正态分布概率为 0.05 时,求标准正态累积分布函数 的反函数值 z,正态分布的计算概率,Excel,2019-9-5,数据正态性的评估,对数据画出频数分布的直方图或茎叶图 若数据近似服从正态分布,则图形的形状与上面给出的正态曲线应该相似 绘制正态概率图。有时也称为分位数分位数图或称Q-Q图或称为P-P图 用于考察观测数据是否符合某一理论分布,如正态分布、指数分布、t分布等等 P-P图是根据观测数据的累积概率与理论分布(如正态分布)的累积概率的符合程度绘制的 Q-Q图则是根据观测值的实际分位数与理论分布(如正态分布)的分位数绘制的 使用非参数检验中的Kolmogorov-Smirnov检验(K-S检验),2019-9-5,用SPSS绘制正态概率图,第1步:选择【Graphs】下拉菜单,并选择【P-P】 或 【Q-Q】选项进入主对话框 第2步:在主对话框中将变量选入【Variables】 ,点击【OK】,绘制正态概率图,SPSS,2019-9-5,正态概率图的绘制 (例题分析),P-P图 Q-Q图,【例4-6】第2章中电脑销售额的正态概率图,2019-9-5,正态概率图的分析 (normal probability plots),实际应用中,只有样本数据较多时正态概率图的效果才比较好。当然也可以用于小样本,但此时可能会出现与正态性有较大偏差的情况 在分析正态概率图时,最好不要用严格的标准去衡量数据点是否在一条直线上,只要近似在一条直线上即可 对于样本点中数值最大或最小的点也可以不用太关注,除非这些点偏离直线特别远,因为这些点通常会与直线有偏离。如果某个点偏离直线特别远,而其他点又基本上在直线上时,这个点可能是离群点,可不必考虑,4.3 由正态分布导出的几个重要分布 4.3.1 t 分布 4.3.2 2 分布 4.3.3 F 分布,第 4 章 概率分布,4.3.1 t 分布,4.3 由正态分布导出的几个重要分布,2019-9-5,t-分布 (t-distribution),提出者是William Gosset,也被称为学生分布(students t) t 分布是类似正态分布的一种对称分布,通常要比正态分布平坦和分散。一个特定的分布依赖于称之为自由度的参数。随着自由度的增大,分布也逐渐趋于正态分布,2019-9-5,t-分布 (用Excel计算t分布的概率和临界值),利用Excel中的【TDIST】统计函数,可以计算给定值和自由度时分布的概率值 语法:TDIST(x,degrees_freedom,tails) 利用【TINV】函数则可以计算给定概率和自由度时的相应 语法:TINV(probability,degrees_freedom),计算t分布的临界值,Excel,4.3.2 2 分布,4.3 由正态分布导出的几个重要分布,2019-9-5,由阿贝(Abbe) 于1863年首先给出,后来由海尔墨特(Hermert)和卡皮尔逊(KPearson) 分别于1875年和1900年推导出来 设 ,则 令 ,则 y 服从自由度为1的2分布,即 对于n个正态随机变量y1 ,y2 ,yn,则随机变量 称为具有n个自由度的2分布,记为,c2-分布 (2-distribution),2019-9-5,分布的变量值始终为正 分布的形状取决于其自由度n的大小,通常为不对称的正偏分布,但随着自由度的增大逐渐趋于对称 期望为:E(2)=n,方差为:D(2)=2n(n为自由度) 可加性:若U和V为两个独立的2分布随机变量,U2(n1),V2(n2),则U+V这一随机变量服从自由度为n1+n2的2分布,c2-分布 (性质和特点),2019-9-5,不同自由度的c2-分布,2019-9-5,c2-分布 (用Excel计算c2分布的概率),利用Excel提供的【CHIDIST】统计函数,计算c2分布右单尾的概率值 语法:CHIDIST(x,degrees_freedom) ,其中df为自由度,x,是随机变量的取值 利用【CHIINV】函数则可以计算给定右尾概率和自由度时相应的反函数值 语法:CHIINV(probability,degrees_freedom),计算c2 分布的概率,Excel,4.3.3 F 分布,4.3 由正态分布导出的几个重要分布,2019-9-5,为纪念统计学家费希尔(R.A.Fisher) 以其姓氏的第一个字母来命名则 设若U为服从自由度为n1的2分布,即U2(n1),V为服从自由度为n2的2分布,即V2(n2),且U和V相互独立,则 称F为服从自由度n1和n2的F分布,记为,F-分布 (F distribution),2019-9-5,不同自由度的F分布,2019-9-5,F-分布 (用Excel计算F分布的概率和临街值),利用Excel提供的【FDIST】统计函数,计算分布右单尾的概率值 语法:FDIST(x,degrees_freedom1,degrees_freedom2) 利用【FINV】函数则可以计算给定单尾概率和自由度时的相应 语法: FINV(probability,degrees_freedom1,degrees_freedom2),计算F分布的概率,Excel,4.4 样本统计量的概率分布 4.4.1 统计量及其分布 4.4.2 样本均值的分布 4.4.3 其他统计量的分布 4.4.4 统计量的标准误差,第 4 章 概率分布,4.4.1 统计量及其分布,4.4 样本统计量的概率分布,2019-9-5,参数和统计量,参数(parameter) 描述总体特征的概括性数字度量,是研究者想要了解的总体的某种特征值 一个总体的参数:总体均值()、标准差()、总体比例();两个总体参数:(1 -2)、(1-2)、(1/2) 总体参数通常用希腊字母表示 统计量(statistic) 用来描述样本特征的概括性数字度量,它是根据样本数据计算出来的一些量,是样本的函数 一个总体参数推断时的统计量:样本均值(x)、样本标准差(s)、样本比例(p)等两个总体参数推断时的统计量: (x1-x2)、(p1-p2)、(s1/s2) 样本统计量通常用小写英文字母来表示,2019-9-5,样本统计量的概率分布,是一种理论分布 在重复选取容量为n的样本时,由该统计量的所有可能取值形成的相对频数分布 随机变量是 样本统计量 样本均值, 样本比例,样本方差等 结果来自容量相同的所有可能样本 提供了样本统计量长远而稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据,抽样分布 (sampling distribution),2019-9-5,抽样分布的形成过程 (sampling distribution),4.4.2 样本均值的分布,4.4 样本统计量的概率分布,2019-9-5,在重复选取容量为n的样本时,由样本均值的所有可能取值形成的相对频数分布 一种理论概率分布 推断总体均值的理论基础,样本均值的分布,2019-9-5,样本均值的分布 (例题分析),【例4-10】设一个总体,含有4个元素(个体) ,即总体单位数N=4。4 个个体分别为x1=1,x2=2,x3=3,x4=4 。总体的均值、方差及分布如下,均值和方差,2019-9-5,样本均值的分布 (例题分析), 现从总体中抽取n2的简单随机样本,在重复抽样条件下,共有42=16个样本。所有样本的结果为,2019-9-5,样本均值的分布 (例题分析), 计算出各样本的均值,如下表。并给出样本均值的抽样分布,2019-9-5,样本均值的分布与总体分布的比较 (例题分析), = 2.5 2 =1.25,总体分布,样本均值分布,2019-9-5,样本均值的分布 与中心极限定理,当总体服从正态分布N(,2)时,来自该总体的所有容量为n的样本的均值x也服从正态分布,x 的期望值为,方差为2/n。即xN(,2/n),2019-9-5,中心极限定理 (central limit theorem),从均值为,方差为 2的一个任意总体中抽取容量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为、方差为2/n的正态分布,2019-9-5,中心极限定理 (central limit theorem),x 的分布趋于正态分布的过程,2019-9-5,抽样分布与总体分布的关系,总体分布,正态分布,非正态分布,大样本,小样本,样本均值 正态分布,样本均值 正态分布,样本均值 非正态分布,2019-9-5,样本均值的分布 样本均值的期望值和方差,样本均值的分布 (数学期望与方差),4.4.3 其他统计量的分布,4.4 样本统计量的概率分布,2019-9-5,总体(或样本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年游戏开发行业求职指南面试模拟题及答题技巧
- 2026届贵州省六盘水市第二十三中学化学高一上期末教学质量检测试题含解析
- 2025注册验船师考试(C级船舶检验专业综合能力)全真冲刺试题及答案一
- 2025年慈善机构招录工作预测试题与参考解答发布
- 2025年道路交通考试试题及答案
- 2025年绿色经济与可持续发展考试卷及答案
- 2025注册验船师资格考试(A级船舶检验专业能力)综合试题及答案一
- 2025年B级注册验船师资格考试复习资料考前冲刺试题及答案一
- 2025年体育教练员招聘笔试预测试题集
- 公务员真实面试题及答案
- 房建监理平行检查记录表格模板(参考版)
- 计算机操作系统(第四版)-汤小丹-课后习题答案
- 《财务管理》课程教学实施方案
- 露天采矿设计技术规定
- 检验科生物安全风险评估报告
- 12生物分子网络ppt课件
- 手术室护士长工作手册-精品完整版
- 数独比赛六宫练习题96道练习
- 大学体育四——啦啦操的教学设计
- (高清正版)T_CAGHP 006—2018泥石流灾害防治工程勘查规范(试行)
- 电力工程常用数据资料与计算速查手册
评论
0/150
提交评论