




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,返回总目录,振动理论与应用,第1章 振动的基本理论,Theory of Vibration with Applications,Theory of Vibration with Applications,引 言,振动是一种运动形态,是指物体在平衡位置附近作往复运动。 物理学知识的深化和扩展物理学中研究质点的振动;工程力学研究研究系统的振动,以及工程构件和工程结构的振动。 振动属于动力学第二类问题已知主动力求运动。,返回首页,Theory of Vibration with Applications,振动理论与应用,振动问题的研究方法与分析其他动力学问题相类似:,选择合适的广义坐标; 分析运动; 分析受力; 选择合适的动力学定理; 建立运动微分方程; 求解运动微分方程,利用初始条件确定积分常数。,返回首页,引 言,Theory of Vibration with Applications,振动理论与应用,振动问题的研究方法与分析其他动力学问题不同的是:一般情形下,都选择平衡位置作为广义坐标的原点。,研究振动问题所用的动力学定理:,矢量动力学基础中的动量定理; 动量矩定理; 动能定理; 达朗伯原理。 分析动力学基础中的拉格朗日方程。,返回首页,引 言,Theory of Vibration with Applications,振动理论与应用,振动概述,所考察的系统既有惯性又有弹性。 运动微分方程中,既有等效质量,又有等效刚度。,振动问题的共同特点,返回首页,Theory of Vibration with Applications,振动理论与应用,Theory of Vibration with Applications,返回首页,Theoretical Mechanics,第1章 振动的基本理论,1.1 振动系统 1.2 简谐振动 1.3 周期振动的谐波分析 1.4 非周期函数的连续频谱,目 录,返回首页,Theory of Vibration with Applications,1.1 振动系统,第1章 振动的基本理论,返回首页,Theory of Vibration with Applications,1.1 振动系统,振动系统一般可分为连续系统或离散系统。 具有连续分布的质量与弹性的系统,称为连续弹性体系统。弹性体是具有无限多自由度的系统,它的振动规律要用时间和空间坐标的函数来描述,其运动方程是偏微分方程。,在一般情况下,要对连续系统进行简化,用适当的准则将分布参数“凝缩”成有限个离散的参数,这样便得到离散系统。所建立的振动方程是常微分方程。由于所具有的自由度数目上的区别,离散系统又称为多自由度系统。,按系统的自由度划分:,振动问题的分类,单自由度振动一个自由度系统的振动。 多自由度振动两个或两个以上自由度系统的 振动。 连续系统振动连续弹性体的振动。这种系统 具有无穷多个自由度。,返回首页,振动概述,Theory of Vibration with Applications,1.1 振动系统,按系统特性或运动微分方程类型划分:,振动问题的分类,线性振动系统的运动微分方程为线性方程的振动。,非线性振动系统的刚度呈非线性特性时,将得到非线性运动微分方程,这种系统的振动称为非线性振动。,返回首页,Theory of Vibration with Applications,1.1 振动系统,返回首页,Theory of Vibration with Applications,1.1 振动系统,线性振动:相应的系统称为线性系统。 线性振动的一个重要特性是线性叠加原理成立。 非线性振动:相应的系统称为非线性系统。 非线性振动的叠加原理不成立。,按激励特性划分:,振动问题的分类,自由振动没有外部激励,或者外部激励除去后,系统自身的振动。 受迫振动系统在作为时间函数的外部激励下发生的振动,这种外部激励不受系统运动的影响。 自激振动系统由系统本身运动所诱发和控制的激励下发生的振动。 参激振动激励源为系统本身含随时间变化的参数,这种激励所引起的振动。,返回首页,振动概述,Theory of Vibration with Applications,1.1 振动系统,返回首页,Theory of Vibration with Applications,1.2 简谐振动,第1章 振动的基本理论,返回首页,Theory of Vibration with Applications,1.2 简谐振动,1.2.1简谐振动的表示,1. 用正弦函数表示简谐振动 用时间t的正弦(或余弦)函数表示的简谐振动。其一般表达式为,一次振动循环所需的时间T 称为周期;单位时间内振动循环的次数f 称为频率。,周期T的单位为秒(s),频率f的单位为赫兹(Hz),,圆频率 的单位为弧度/秒(rad/s)。,返回首页,Theory of Vibration with Applications,1.2 简谐振动,1.2.1简谐振动的表示,图描述了用正弦函数表示的简谐振动,它可看成是该图中左边半径为A的圆上一点作等角速度 的运动时在x轴上的投影。,如果视x为位移,则简谐振动的速度和加速度就是位移表达式关于时间t的一阶和二阶导数,即,返回首页,Theory of Vibration with Applications,1.2 简谐振动,1.2.1简谐振动的表示,可见,若位移为简谐函数,其速度和加速度也是简谐函数,具有相同的频率。,在相位上,速度和加速度分别超前位移 和 。,重要特征:简谐振动的加速度大小与位移成正比,但方向总是与位移相反,始终指向平衡位置。,可得到加速度与位移有如下关系,返回首页,Theory of Vibration with Applications,1.2 简谐振动,1.2.1简谐振动的表示,旋转矢量OM 的模为振幅A,角速度为圆频率 ,任一瞬时OM 在纵轴上的投影ON 即为简谐振动表达式,返回首页,Theory of Vibration with Applications,1.2 简谐振动,1.2.1简谐振动的表示,记 , 复数,复数Z的实部和虚部可分别表示为,简谐振动的位移x与它的复数表示z的关系可写为,3. 用复数表示简谐振动,返回首页,Theory of Vibration with Applications,1.2 简谐振动,1.2.1简谐振动的表示,由于,用复数表示的简谐振动的速度加速度为,也可写成,是一复数,称为复振幅。它包含了振动的振幅和相角两个信息。用复指数形式描述简谐振动将给运算带来很多方便。,返回首页,Theory of Vibration with Applications,1.2 简谐振动,1.2.2简谐振动的合成,1. 两个同频率振动的合成,有两个同频率的简谐振动,由于A1 、A2的角速度相等,旋转时它们之间的夹角( )保持不变,合矢量A也必然以相同的角速度 作匀速转动,返回首页,Theory of Vibration with Applications,1.2 简谐振动,1.2.2简谐振动的合成,由矢量的投影定理,A =A1 +A2,即两个同频率简谐振动合成的结果仍然是简谐振动,其角频率与原来简谐振动的相同,其振幅和初相角用上式确定。,返回首页,Theory of Vibration with Applications,1.2 简谐振动,1.2.2简谐振动的合成,2、两个不同频率振动的合成 有两个不同频率的简谐振动,返回首页,Theory of Vibration with Applications,1.2 简谐振动,1.2.2简谐振动的合成,当频率比为有理数时,合成为周期振动,但不是简谐振动,合成振动的周期是两个简谐振动周期的最小公倍数。,若 与 之比是无理数,则无这样一个周期。其合成振动是非周期的。,若 ,对于 ,则有,返回首页,Theory of Vibration with Applications,1.2 简谐振动,1.2.2简谐振动的合成,令,式中的正弦函数完成了几个循环后,余弦函数才能完成一个循环。这是一个频率为 的变幅振动,振幅在2A与零之间缓慢地周期性变化。,它的包络线,返回首页,Theory of Vibration with Applications,1.2 简谐振动,1.2.2简谐振动的合成,这种特殊的振动现象称为“拍”,或者说“拍”是一个具有慢变振幅的振动,返回首页,Theory of Vibration with Applications,1.3 周期振动的谐波分析,第1章 振动的基本理论,返回首页,Theory of Vibration with Applications,1.3 周期振动的谐波分析,周期振动,展成傅氏级数,n=1,2,3,n=1,2,3,返回首页,Theory of Vibration with Applications,1.3 周期振动的谐波分析,一个周期振动可视为频率顺次为基频 及整倍数的若干或无数简谐振动分量的合成振动过程。,在振动力学中将傅氏展开称为谐波分析,周期函数的幅值频谱图,相位频谱图。,周期函数的谱线是互相分开的,故称为离散频谱。,返回首页,Theory of Vibration with Applications,1.3 周期振动的谐波分析,函数的频谱,说明了组成该函数的简谐成分,反映了该周期函数的特性。 这种分析振动的方法称为频谱分析。 由于自变量由时间改变为频率,所以频谱分析实际上是由时间域转入频率域。 这是将周期振动展开为傅里叶级数的另一个物理意义。,返回首页,Theory of Vibration with Applications,1.3 周期振动的谐波分析,周期振动的谐波分析以无穷级数出现,但一般可以用有限项近似表示周期振动。 例1.1 已知一周期性矩形波如图所示,试对其作谐波分析。,解矩形波一个周期内函数F (t)可表示为,表示F(t)的波形关于t轴对称,故其平均值为零。,返回首页,Theory of Vibration with Applications,1.3 周期振动的谐波分析,n=1,2,3,于是,得F(t)的傅氏级数,F(t)是奇函数,在它的傅氏级数中也只含正弦函数项。在实际的振动计算中,根据精度要求,级数均取有限项。F(t)的幅值频谱如图所示。,返回首页,Theory of Vibration with Applications,1.4 非周期函数的连续频谱,第1章 振动的基本理论,返回首页,Theory of Vibration with Applications,1.4 非周期函数的连续频谱,函数f ( t )的傅氏积分公式,f ( t )的傅氏变换,又称非周期函数f ( t )的频谱函数。频谱函数的值一般是复数。,连续频谱,返回首页,Theory
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全防火培训课件
- 茶叶加工培训课件图片
- 市场定位与发展趋势预测
- 2024年安徽省合肥市第四十六中学九上化学期末达标检测模拟试题含解析
- 2024-2025学年江苏省无锡市梁溪区化学九上期末预测试题含解析
- 河道保洁整治管理办法
- 油茶种植基地管理办法
- 泉州冬季果园管理办法
- 法院律师平台管理办法
- 注册咨询登记管理办法
- 律师事务所客户数据安全管理制度
- 2025数学新课程标准培训
- 2025-2030中国新能源行业市场现状供需分析及重点企业投资评估规划分析研究报告
- GB/T 45698-2025物业服务客户满意度测评
- 2025年新高考1卷(新课标Ⅰ卷)语文试卷(含答案)
- 本土品牌“品牌年轻化”策略研究
- 湖南省永州市宁远县2025届七年级数学第二学期期末达标检测试题含解析
- 创新人才小升初试题及答案
- 胰岛素笔的使用操作流程
- 江山南方水泥有限公司浙江省江山市大陈乡乌龙村铁锤山水泥用灰岩矿建设项目环境影响报告表
- 小学语文主题教学论:理论重塑与创新实践
评论
0/150
提交评论