




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆的一般方程,第二章 解析几何初步,2.2.2,圆的标准方程,x,y,O,C,M(x,y),圆心C(a,b),半径r,若圆心为O(0,0),则圆的方程为:,标准方程,圆心 (2, 4) ,半径,求圆心和半径,圆 (x1)2+ (y1)2=9,圆 (x2)2+ (y+4)2=2,圆 (x+1)2+ (y+2)2=m2,圆心 (1, 1) ,半径3,圆心 (1, 2) ,半径|m|,圆的一般方程,展开得,任何一个圆的方程都是二元二次方程,反之是否成立?,圆的一般方程,配方得,不一定是圆,以(1,-2)为圆心,以2为半径的圆,配方得,不是圆,练习,判断下列方程是不是表示圆,以(2,3)为圆心,以3为半径的圆,表示点(2,3),不表示任何图形,圆的一般方程,得:x2+y2-2ax-2by+a2+b2-r2=0,即:x2+y2+Dx+Ey+F=0(1),可见任何圆的方程都可以写成(1)式,,不妨设:D2a、E2b、Fa2+b2-r2,圆的一般方程,(1)当 时,,表示圆,,(2)当 时,,表示点,(3)当 时,,不表示任何图形,(x-a)2+(y-b)2 =r2,两种方程的字母间的关系:,形式特点:(1)x2和y2的系数相同,不等于0 (2)没有xy这样的项。,练习1:下列方程各表示什么图形?,原点(0,0),若已知条件涉及圆心和半径, 我们一般采用圆的标准方程较简单.,练习:,若已知三点求圆的方程,我们常采用圆的 一般方程用待定系数法求解.,练习:,把点A,B,C的坐标代入得方程组,所求圆的方程为:,小结,(1)当 时,,表示圆,,(2)当 时,,表示点,(3)当 时,,不表示任何图形,例2. 已知一曲线是与定点O(0,0),A(3,0)距离的比是,求此曲线的轨迹方程,并画出曲线,的点的轨迹,,解:在给定的坐标系里,设点M(x,y)是曲线上的任意一点,也就是点M属于集合,由两点间的距离公式,得,化简得 x2+y2+2x30 这就是所求的曲线方程 把方程的左边配方,得(x+1)2+y24 所以方程的曲线是以C(1,0)为圆心,2为半径的圆,x,y,M,A,O,.,O,.,.,例2:已知一曲线是与两个定点O(0,0),A(3,0)距离的比为 的点的轨迹,求此曲线的方程,并画出曲线。,简单的思考与应用 (1)已知圆 的圆心坐标为 (-2,3),半径为4,则D,E,F分别等于 是圆的方程的充要条件是 (3)圆 与 轴相切,则这个圆截 轴所得的弦长是,例题. 自点A(-3,3)发射的光线l 射到x轴上,被x轴反射, 其反射光线所在的直线与圆x2+y2-4x-4y+7=0相切, 求光线l 所在直线的方程.,B(-3,-3),入射光线及反射光线与 x轴夹角相等.,(2)点P关于x轴的对称点Q在 反射光线所在的直线l 上.,(3)圆心C到l 的距离等于 圆的半径.,答案: l : 4x+3y+3=0或3x+4y-3=0,例:求过三点A(5,1),B (7,-3),C(2,8)的圆的方程,圆心:两条弦的中垂线的交点,半径:圆心到圆上一点,x,y,O,E,A(5,1),B(7,-3),C(2,-8),几何方法,方法一:,小结:求圆的方程,几何方法,求圆心坐标 (两条直线的交点)(常用弦的中垂线),求 半径 (圆心到圆上一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年智能制造工程技术人员初级笔试预测题
- 2025年安全工程师招聘常见问题解析
- 2025年安全培训题库案例解析大全
- 2025年安全管理技能题及答案集
- 九江市瑞昌市2024-2025学年中考数学模拟试题含解析
- 2025年项目经理面试模拟题及答案详解手册
- 2025年司法鉴定助理笔试模拟题及解析物证
- 2025年企业管理顾问资格认证考试试题及答案解析
- 2025年农林专业采伐技师水平考核试题及答案解析
- 2025年美容彩妆技师资格考试试题及答案解析
- 自考英语一单词
- 派出所纪律作风整顿工作总结
- 新人教版高中物理选择性必修第一册课时作业及答案
- 呼吸系统疾病所致精神障碍
- 青光眼小梁切除手术
- 2024(统编版)语文六年级上册 开学第一课 课件
- 招标代理服务服务方案
- 风力发电技术的发展现状和未来发展趋势
- 财税公司报告
- 脱发患者的头皮及头发护理方法
- 球囊扩张支架植入术
评论
0/150
提交评论