




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,二、高阶导数的运算法则,第三节,一、高阶导数的概念,机动 目录 上页 下页 返回 结束,高阶导数,第二章,一、高阶导数的概念,速度,即,加速度,即,引例:变速直线运动,机动 目录 上页 下页 返回 结束,定义.,若函数,的导数,可导,或,即,或,类似地 , 二阶导数的导数称为三阶导数 ,阶导数的导数称为 n 阶导数 ,或,的二阶导数 ,记作,的导数为,依次类推 ,分别记作,则称,机动 目录 上页 下页 返回 结束,设,求,解:,依次类推 ,例1.,思考: 设,问,可得,机动 目录 上页 下页 返回 结束,例2. 设,求,解:,特别有:,解:,规定 0 ! = 1,思考:,例3. 设,求,机动 目录 上页 下页 返回 结束,例4. 设,求,解:,一般地 ,类似可证:,机动 目录 上页 下页 返回 结束,例5 . 设,解:,机动 目录 上页 下页 返回 结束,例6. 设,求使,存在的最高,分析:,但是,不存在 .,2,又,阶数,机动 目录 上页 下页 返回 结束,二、高阶导数的运算法则,都有 n 阶导数 , 则,(C为常数),莱布尼兹(Leibniz) 公式,推导 目录 上页 下页 返回 结束,用数学归纳法可证莱布尼兹公式成立 .,机动 目录 上页 下页 返回 结束,例7.,求,解: 设,则,代入莱布尼兹公式 , 得,机动 目录 上页 下页 返回 结束,例8. 设,求,解:,即,用莱布尼兹公式求 n 阶导数,令,得,由,得,即,由,得,机动 目录 上页 下页 返回 结束,内容小结,(1) 逐阶求导法,(2) 利用归纳法,(3) 间接法, 利用已知的高阶导数公式,(4) 利用莱布尼兹公式,高阶导数的求法,如,机动 目录 上页 下页 返回 结束,思考与练习,1. 如何求下列函数的 n 阶导数?,解:,解:,机动 目录 上页 下页 返回 结束,(3),提示: 令,原式,原式,机动 目录 上页 下页 返回 结束,解:,机动 目录 上页 下页 返回 结束,2. (填空题) (1) 设,则,提示:,各项均含因子 ( x 2 ),(2) 已知,任意阶可导, 且,时,提示:,则当,机动 目录 上页 下页 返回 结束,3. 试从,导出,解:,同样可求,(见 P101 题4 ),作业 P101 1 (9) , (12) ; 3 ; 4 (2) ; 8 (2) , (3) ; 9 (2) , (3),第四节 目录
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 红酒杯知识培训内容课件
- 红酒护肤知识培训班总结课件
- 2025年国产铝锭产品购销合同
- 2025物业管理公司合同管理专员工作分析表(工程类)
- 2025资产管理协议
- 2025市区房屋买卖合同协议书
- 红色课件教学模板
- 2025合作协议种植黄瓜合同书
- 2025年北京市购销合同
- 积极的自述200字9篇范文
- 化工厂巡检制度
- 召夸中学财务管理制度
- 车床操作基本知识
- 第2课《开学的准备》(课件)心理健康二年级上册北师大版
- 公司入股投资合同范例
- 2025年秋新人教版数学一年级上册全册课件
- 电影鉴赏《头脑特工队》
- 《全新观光车操作与安全培训课件》
- 医疗器械使用安全责任免责书
- 进出口贸易合规管理制度
- 医疗器械冷链培训
评论
0/150
提交评论