




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018年北京市高考数学试卷(理科)一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。1(5分)已知集合A=x|x|2,B=2,0,1,2,则AB=()A0,1B1,0,1C2,0,1,2D1,0,1,22(5分)在复平面内,复数的共轭复数对应的点位于()A第一象限B第二象限C第三象限D第四象限3(5分)执行如图所示的程序框图,输出的s值为()ABCD4(5分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f,则第八个单音的频率为()AfBfCfDf5(5分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A1B2C3D46(5分)设,均为单位向量,则“|3|=|3+|”是“”的()A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件7(5分)在平面直角坐标系中,记d为点P(cos,sin)到直线xmy2=0的距离当、m变化时,d的最大值为()A1B2C3D48(5分)设集合A=(x,y)|xy1,ax+y4,xay2,则()A对任意实数a,(2,1)AB对任意实数a,(2,1)AC当且仅当a0时,(2,1)AD当且仅当a时,(2,1)A二、填空题共6小题,每小题5分,共30分。9(5分)设an是等差数列,且a1=3,a2+a5=36,则an的通项公式为 10(5分)在极坐标系中,直线cos+sin=a(a0)与圆=2cos相切,则a= 11(5分)设函数f(x)=cos(x)(0),若f(x)f()对任意的实数x都成立,则的最小值为 12(5分)若x,y满足x+1y2x,则2yx的最小值是 13(5分)能说明“若f(x)f(0)对任意的x(0,2都成立,则f(x)在0,2上是增函数”为假命题的一个函数是 14(5分)已知椭圆M:+=1(ab0),双曲线N:=1若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为 ;双曲线N的离心率为 三、解答题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。15(13分)在ABC中,a=7,b=8,cosB=()求A;()求AC边上的高16(14分)如图,在三棱柱ABCA1B1C1中,CC1平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=,AC=AA1=2()求证:AC平面BEF;()求二面角BCDC1的余弦值;()证明:直线FG与平面BCD相交17(12分)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值假设所有电影是否获得好评相互独立()从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;()从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;()假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等用“k=1”表示第k类电影得到人们喜欢“k=0”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6)写出方差D1,D2,D3,D4,D5,D6的大小关系18(13分)设函数f(x)=ax2(4a+1)x+4a+3ex()若曲线y=f(x)在点(1,f(1)处的切线与x轴平行,求a;()若f(x)在x=2处取得极小值,求a的取值范围19(14分)已知抛物线C:y2=2px经过点P(1,2),过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N()求直线l的斜率的取值范围;()设O为原点,=,=,求证:+为定值20(14分)设n为正整数,集合A=|=(t1,t2,tn),tk0,1,k=1,2,n,对于集合A中的任意元素=(x1,x2,xn)和=(y1,y2,yn),记M(,)=(x1+y1|x1y1|)+(x2+y2|x2y2|)+(xn+yn|xnyn|)()当n=3时,若=(1,1,0),=(0,1,1),求M(,)和M(,)的值;()当n=4时,设B是A的子集,且满足:对于B中的任意元素,当,相同时,M(,)是奇数;当,不同时,M(,)是偶数求集合B中元素个数的最大值;()给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素,M(,)=0,写出一个集合B,使其元素个数最多,并说明理由2018年北京市高考数学试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。1(5分)已知集合A=x|x|2,B=2,0,1,2,则AB=()A0,1B1,0,1C2,0,1,2D1,0,1,2【解答】解:A=x|x|2=x|2x2,B=2,0,1,2,则AB=0,1,故选:A2(5分)在复平面内,复数的共轭复数对应的点位于()A第一象限B第二象限C第三象限D第四象限【解答】解:复数=,共轭复数对应点的坐标(,)在第四象限故选:D3(5分)执行如图所示的程序框图,输出的s值为()ABCD【解答】解:在执行第一次循环时,k=1,S=1在执行第一次循环时,S=1=由于k=23,所以执行下一次循环S=,k=3,直接输出S=,故选:B4(5分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f,则第八个单音的频率为()AfBfCfDf【解答】解:从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f,则第八个单音的频率为:=故选:D5(5分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A1B2C3D4【解答】解:四棱锥的三视图对应的直观图为:PA底面ABCD,AC=,CD=,PC=3,PD=2,可得三角形PCD不是直角三角形所以侧面中有3个直角三角形,分别为:PAB,PBC,PAD故选:C6(5分)设,均为单位向量,则“|3|=|3+|”是“”的()A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件【解答】解:“|3|=|3+|”平方得|2+9|26=|2+9|2+6则=0,即,则“|3|=|3+|”是“”的充要条件,故选:C7(5分)在平面直角坐标系中,记d为点P(cos,sin)到直线xmy2=0的距离当、m变化时,d的最大值为()A1B2C3D4【解答】解:由题意d=,tan=,当sin(+)=1时,dmax=1+3d的最大值为3故选:C8(5分)设集合A=(x,y)|xy1,ax+y4,xay2,则()A对任意实数a,(2,1)AB对任意实数a,(2,1)AC当且仅当a0时,(2,1)AD当且仅当a时,(2,1)A【解答】解:当a=1时,集合A=(x,y)|xy1,ax+y4,xay2=(x,y)|xy1,x+y4,x+y2,显然(2,1)不满足,x+y4,x+y2,所以A,C不正确;当a=4,集合A=(x,y)|xy1,ax+y4,xay2=(x,y)|xy1,4x+y4,x4y2,显然(2,1)在可行域内,满足不等式,所以B不正确;故选:D二、填空题共6小题,每小题5分,共30分。9(5分)设an是等差数列,且a1=3,a2+a5=36,则an的通项公式为an=6n3【解答】解:an是等差数列,且a1=3,a2+a5=36,解得a1=3,d=6,an=a1+(n1)d=3+(n1)6=6n3an的通项公式为an=6n3故答案为:an=6n310(5分)在极坐标系中,直线cos+sin=a(a0)与圆=2cos相切,则a=1+【解答】解:圆=2cos,转化成:2=2cos,进一步转化成直角坐标方程为:(x1)2+y2=1,把直线(cos+sin)=a的方程转化成直角坐标方程为:x+ya=0由于直线和圆相切,所以:利用圆心到直线的距离等于半径则:=1,解得:a=1a0则负值舍去故:a=1+故答案为:1+11(5分)设函数f(x)=cos(x)(0),若f(x)f()对任意的实数x都成立,则的最小值为【解答】解:函数f(x)=cos(x)(0),若f(x)f()对任意的实数x都成立,可得:,kZ,解得=,kZ,0则的最小值为:故答案为:12(5分)若x,y满足x+1y2x,则2yx的最小值是3【解答】解:作出不等式组对应的平面区域如图:设z=2yx,则y=x+z,平移y=x+z,由图象知当直线y=x+z经过点A时,直线的截距最小,此时z最小,由得,即A(1,2),此时z=221=3,故答案为:313(5分)能说明“若f(x)f(0)对任意的x(0,2都成立,则f(x)在0,2上是增函数”为假命题的一个函数是f(x)=sinx【解答】解:例如f(x)=sinx,尽管f(x)f(0)对任意的x(0,2都成立,当x0,)上为增函数,在(,2为减函数,故答案为:f(x)=sinx14(5分)已知椭圆M:+=1(ab0),双曲线N:=1若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为2【解答】解:椭圆M:+=1(ab0),双曲线N:=1若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,可得椭圆的焦点坐标(c,0),正六边形的一个顶点(,),可得:,可得,可得e48e2+4=0,e(0,1),解得e=同时,双曲线的渐近线的斜率为,即,可得:,即,可得双曲线的离心率为e=2故答案为:;2三、解答题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。15(13分)在ABC中,a=7,b=8,cosB=()求A;()求AC边上的高【解答】解:()ab,AB,即A是锐角,cosB=,sinB=,由正弦定理得=得sinA=,则A=()由余弦定理得b2=a2+c22accosB,即64=49+c2+27c,即c2+2c15=0,得(c3)(c+5)=0,得c=3或c=5(舍),则AC边上的高h=csinA=3=16(14分)如图,在三棱柱ABCA1B1C1中,CC1平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=,AC=AA1=2()求证:AC平面BEF;()求二面角BCDC1的余弦值;()证明:直线FG与平面BCD相交【解答】(I)证明:E,F分别是AC,A1C1的中点,EFCC1,CC1平面ABC,EF平面ABC,又AC平面ABC,EFAC,AB=BC,E是AC的中点,BEAC,又BEEF=E,BE平面BEF,EF平面BEF,AC平面BEF(II)解:以E为原点,以EB,EC,EF为坐标轴建立空间直角坐标系如图所示:则B(2,0,0),C(0,1,0),D(0,1,1),=(2,1,0),=(0,2,1),设平面BCD的法向量为=(x,y,z),则,即,令y=2可得=(1,2,4),又EB平面ACC1A1,=(2,0,0)为平面CDC1的一个法向量,cos,=由图形可知二面角BCDC1为钝二面角,二面角BCDC1的余弦值为(III)证明:F(0,0,2),(2,0,1),=(2,0,1),=2+04=20,与不垂直,FG与平面BCD不平行,又FG平面BCD,FG与平面BCD相交17(12分)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值假设所有电影是否获得好评相互独立()从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;()从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;()假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等用“k=1”表示第k类电影得到人们喜欢“k=0”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6)写出方差D1,D2,D3,D4,D5,D6的大小关系【解答】解:()设事件A表示“从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影”,总的电影部数为140+50+300+200+800+510=2000部,第四类电影中获得好评的电影有:2000.25=50部,从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的频率为:P(A)=0.025()设事件B表示“从第四类电影和第五类电影中各随机选取1部,恰有1部获得好评”,第四类获得好评的有:2000.25=50部,第五类获得好评的有:8000.2=160部,则从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率:P(B)=0.35()由题意知,定义随机变量如下:k=,则k服从两点分布,则六类电影的分布列及方差计算如下:第一类电影: 1 1 0 P 0.4 0.6E(1)=10.4+00.6=0.4,D(1)=(10.4)20.4+(00.4)20.6=0.24第二类电影: 2 1 0 P 0.2 0.8E(2)=10.2+00.8=0.2,D(2)=(10.2)20.2+(00.2)20.8=0.16第三类电影: 3 1 0 P 0.15 0.85E(3)=10.15+00.85=0.15,D(3)=(10.15)20.15+(00.85)20.85=0.1275第四类电影: 4 1 0 P 0.25 0.75E(4)=10.25+00.75=0.15,D(4)=(10.25)20.25+(00.75)20.75=0.1875第五类电影: 5 1 0 P 0.2 0.8E(5)=10.2+00.8=0.2,D(5)=(10.2)20.2+(00.2)20.8=0.16第六类电影: 6 1 0 P 0.1 0.9E(6)=10.1+00.9=0.1,D(5)=(10.1)20.1+(00.1)20.9=0.09方差D1,D2,D3,D4,D5,D6的大小关系为:D6D3D2=D5D4D118(13分)设函数f(x)=ax2(4a+1)x+4a+3ex()若曲线y=f(x)在点(1,f(1)处的切线与x轴平行,求a;()若f(x)在x=2处取得极小值,求a的取值范围【解答】解:()函数f(x)=ax2(4a+1)x+4a+3ex的导数为f(x)=ax2(2a+1)x+2ex由题意可得曲线y=f(x)在点(1,f(1)处的切线斜率为0,可得(a2a1+2)e=0,解得a=1;()f(x)的导数为f(x)=ax2(2a+1)x+2ex=(x2)(ax1)ex,若a=0则x2时,f(x)0,f(x)递增;x2,f(x)0,f(x)递减x=2处f(x)取得极大值,不符题意;若a0,且a=,则f(x)=(x2)2ex0,f(x)递增,无极值;若a,则2,f(x)在(,2)递减;在(2,+),(,)递增,可得f(x)在x=2处取得极小值;若0a,则2,f(x)在(2,)递减;在(,+),(,2)递增,可得f(x)在x=2处取得极大值,不符题意;若a0,则2,f(x)在(,2)递增;在(2,+),(,)递减,可得f(x)在x=2处取得极大值,不符题意综上可得,a的范围是(,+)19(14分)已知抛物线C:y2=2px经过点P(1,2),过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N()求直线l的斜率的取值范围;()设O为原点,=,=,求证:+为定值【解答】解:()抛物线C:y2=2px经过点P(1,2),4=2p,解得p=2,设过点(0,1)的直线方程为y=kx+1,设A(x1,y1),B(x2,y2)联立方程组可得,消y可得k2x2+(2k4)x+1=0,=(2k4)24k20,且k0解得k1,且k0,x1+x2=,x1x2=,故直线l的斜率的取值范围(,0)(0,1);()证明:设点M(0,yM),N(0,yN),则=(0,yM1),=(0,1)因为=,所以yM1=yM1,故=1yM,同理=1yN,直线PA的方程为y2=(x1)=(x1)=(x1),令x=0,得yM=,同理可得yN=,因为+=+=+=2,+=2,+为定值20(14分)设n为正整数,集合A=|=(t1,t2,tn),tk0,1,k=1,2,n,对于集合A中的任意元素=(x1,x2,xn)和=(y1,y2,yn),记M(,)=(x1+y1|x1y1|)+(x2+y2|x2y2|)+(xn+yn|xnyn|)()当n=3时,若=(1,1,0),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甘肃xx化工园区建设项目实施方案
- 2025年工程项目管理问题分类试题及答案
- 行政管理与市政创新方式试题及答案
- 专科行政管理的优势与劣势试题及答案
- 行政管理经济法的法律环境试题及答案
- 厂房扩建项目规划设计方案(范文参考)
- 2025年市政工程实习经验试题及答案
- 水利水电工程多项目管理试题及答案
- 行政管理公共政策的研究路径试题及答案
- 2025市政学人才选拔试题及答案分享
- 中汽研X华为 2024年自动驾驶安全模型研究-2025-04-自动驾驶
- 洗浴合同协议模板
- 2024-2025学年高中生物每日一题光合作用与细胞呼吸过程综合含解析新人教版必修1
- 绿化工考试试题及答案
- 医疗器械经营质量管理规范(153)培训课件
- 四川宜宾环球集团有限公司招聘笔试真题2024
- 2025年北京市西城区高三一模物理试卷(含答案)
- 2025-2030全球及中国COB发光二极管行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 群众文化知识试题及答案
- 2025年-重庆市建筑安全员B证考试题库附答案
- 客情维护培训
评论
0/150
提交评论