




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第10章 向量的数量积和向量积 向量函数微分法,知识逻辑关系图,导数的几何意义和物理意义,向量函数连续定义,重点:向量函数导数及其几何意义 难点:空间曲线弧微分,设 a =(ax , ay , az) b =(bx , by , bz), 且为常数,(1) a b = (ax bx , ay by , az bz ),(2) a = (ax , ay , az) (3) (4),复习:,10-3,向量函数的微分和积分,一、向量函数 1.向量函数定义,连续的向量函数和空间曲线有着密切的联系,2.向量函数的几何意义 向量函数 起点定在O点,当t变化时终点 描绘出图形是一条空间曲线.,直线: r(t)=(x0+at,y0+bt, z0+ct) 摆线: r(t) =( a(t-sint), a(1-cost) ,0),螺旋线的参数方程,取时间t为参数,,解,让我们欣赏几个向量函数表示的空间曲线,3. 向量函数极限定义,则称向量 r (t)的极限为r0 或称向量 r(t)按模收敛r0,定理,若 则称向量函数在t=t0连续,例 已知螺旋线 计算,连续,二、 向量函数导数与微分 1.定义: 向量函数 在t0处的导数,向量函数,2.向量值函数的导数与微分运算法则,(1,(2,(3,(4),(5),证(5),3.注意(1)r(t)的几何意义,(2)向量函数导数物理意义:,设r(t)为沿空间曲线运动质点位置 t 作为质点开始运动起时间:,例1 求螺旋线,在点(0,2,/2)处的切线方程,向上飞行,求 (1)滑翔机速度和加速度,(2)滑翔机 t时刻的速率 (3)如果有的话,求滑翔机 的速度正交于加速度的时刻,例3 证明 定长度的向量函数的导向量与r(t)垂直 证明:,如当我们跟踪以原点为中心的球面 上运动的质点时,位置向量有一个 等于球面半径的固定长度,(如图) 运动路径的速度向量 与运动路径相切,例 一质点以常角速度w0 在半径为R的圆上运动, 求其速度与加速度? 解:r ( )= (R cos , R sin ,0 ),= - (R cos , R sin ,0)W02,=(-R sin, R cos ,0)W0,y r() 0 x z,起点定在O点,当t 变化时终点描绘出图形 是一条空间曲线弧。,三、弧微分,向量函数,弧微分,设,在(a , b)内有连续导数,其图形为 AB,弧长,或,平面曲线弧,我们已经得到了弧微分公式,空间曲线,弧微分,例:求螺旋线: r(t) =( cost, sint,t) 0t2弧的长度,注1:,例 证明:,简证:,M,注2设某质点在空间中运动轨道为r(t) :t 其中 t 被看作为质点开始运动起的时间值则:,向上滑
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电子商务行业跨境电商市场前景预测研究报告
- 2025年生物医药科技应用前景研究报告
- 2025年环境监测产业技术创新与市场前景研究报告
- 商场供应商培训课件
- 国家事业单位招聘2025国家文化和旅游部恭王府博物馆应届毕业生招聘4人笔试历年参考题库附带答案详解
- 2025福建龙岩市人力资源服务有限公司招聘6人笔试参考题库附带答案详解
- 2025年甘肃公交建集团校园招聘200人笔试参考题库附带答案详解
- 2025年江西安义县工投商业管理有限公司第一批公开招聘工作人员15人笔试参考题库附带答案详解
- 2025年国网电力公司招聘(第二批)笔试参考题库附带答案详解
- 2025山西杏花村汾酒集团有限责任公司销售业务岗社会招聘笔试参考题库附带答案详解
- 2025年全国中小学校科普知识竞赛题库(+答案)
- 2.2创新永无止境教学课件 2025-2026学年度九年级上册 道德与法治 统编版
- 矿山爆破作业安全培训课件
- 2025-2026学年九年级英语上学期第一次月考 (四川成都专用) 2025-2026学年九年级英语上学期第一次月考 (四川成都专用)解析卷
- 高陡边坡稳定性控制技术及其工程实践
- 河南省委党校在职研究生入学考试真题及答案
- 2025年社区工作者招聘考试宗教学试卷
- 2025康复医学考试题库(含参考答案)
- 2025年十五五智能制造推进的战略思考报告-数字化转型基本普及 智能化升级战略突破
- 民兵护路基本知识培训课件
- 2024版中国难治性全身型重症肌无力诊断和治疗专家共识解读课件
评论
0/150
提交评论