已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章 自适应信号处理,郑宝玉,2,内 容,最优滤波理论与Wiener滤波器 梯度下降算法 横向LMS自适应滤波器 横向RLS自适应滤波器 Kalman滤波器 自适应格型滤波器 自适应格-梯型滤波器 无限脉冲响应自适应滤波器 盲自适应滤波器 自适应滤波器的应用,Kalman滤波器,状态空间方程,Kalman滤波器(续),假设:,线性状态模型、高斯噪声,Kalman滤波器(续),已知:,Kalman滤波器(续),三个基本概念,Kalman滤波器(续),新息,称 为 的新息过程向量,Kalman滤波器(续),估计,状态向量估计误差:,相关矩阵:,校正项,Kalman滤波器(续),例: 是一个时不变的标量随机变量, 为观测数据,其中 为白噪声。现用Kalman滤波器自适应估计 ,即考虑设计Kalman滤波器的问题。,设计过程:(1)构造状态空间方程;(2)设计 的更新公式,Kalman滤波器(续),LMS、RLS、Kalman算法比较,(1)计算复杂度: LMSRLSKalman 相差不大,(2)RLS算法是“无激励”状态空间模型,下的Kalman滤波算法,(3)收敛速率: LMS: 越大,学习步长越大,收敛越快 RLS: 越大, 遗忘作用越弱,收敛越慢 时变学习速率、时变遗忘因子 Kalman:无收敛问题,无收敛参数,表1 Kalman滤波算法与RLS滤波算法变量对照表,13,内 容,最优滤波理论与Wiener滤波器 梯度下降算法 横向LMS自适应滤波器 横向RLS自适应滤波器 Kalman滤波器 自适应格型滤波器 自适应格-梯型滤波器 无限脉冲响应自适应滤波器 盲自适应滤波器 自适应滤波器的应用,自适应格型滤波器,格型自适应滤波原理,对称的格型结构 n时刻的前向和后向预测误差(残差)服从如下递推关系:,其初值为:,前向和后向预测误差滤波器传递函数递推公式为,其中,自适应格型滤波器,格型自适应滤波原理,对称的格型结构 容易推出前、后向滤波器传递函数的一般关系式:,由式(4a)知:,为了使前向滤波器物理可实现,前向滤波器传递函数Am(z)必须是最小相位多项式,即,的零点必须全部在单位圆内,亦即,从而,这就是格型滤波器时各级反射系数必须满足的条件。,自适应格型滤波器,格型自适应滤波原理,对称的格型结构(续) 由式(4b), 即由下式,可见, 格型滤波器的设计归结为前向滤波器的设计。,可知,后向滤波器的权系数与前向滤波器的权系数之间存在以下关系:,自适应格型滤波器,格型自适应滤波原理,格型滤波器设计准则 现在讨论前向滤波器A(z)的设计准则。(3)可等价写作,相应的时域表达式为,自适应格型滤波器,格型自适应滤波原理,格型滤波器设计准则 定义前、后向滤波器的残差能量,容易证明,上式表明,在格型滤波器设计中有如下三种等价表述: i) 使前向预测滤波器Am(z)残差能量均方误差Fm最小 ii) 使后向预测滤波器Bm(z)残差能量均方误差Gm最小 iii)使前后向预测滤波器残差能量均方误差(Fm +Gm)/2最小,自适应格型滤波器,格型自适应滤波原理,格型滤波器设计准则 上述结论构成格型滤波器的设计基础,而且由此有 1) 完全可以仅根据前向残差能量Fm设计格型滤波器, 2) 后向预测误差(残差)正交,这表明,不同级滤波器的后向残差正交,这一特性意味着格型滤波器的前后级是解耦的,故可 独立设计每一级滤波器。 3)阶数越大,前向残差Fm越小。,自适应格型滤波器,格型自适应滤波原理,格型滤波器设计准则 总结上述,格型滤波器的设计过程可表述如下: 令m=1,2,,并依次设计前向滤波器,当前向残差能量 不再减小时,最小的阶数即为格型滤波器的最优阶数。,自适应格型滤波器,格型自适应滤波原理,格型自适应算法 令w(n)为滤波器在n时刻的权系数,并满足,现考虑采用一般能量形式的加权最小二乘法。为此,定义瞬态前后向残差能量,和n时刻及以前时刻前后向残差的加权总能量误差函数,自适应格型滤波器,格型自适应滤波原理,格型自适应算法(续) 利用,可得n时刻发射系数,且有,这保证了前向滤波器是最小相位的,即物理可实现的。,自适应格型滤波器,格型自适应滤波原理,格型自适应算法(续) 取 并引入,即得,且 服从如下递推关系式:,自适应格型滤波器,格型自适应滤波原理,格型自适应算法(步骤) 步骤1 计算预测误差功率和前后向预测误差的初始值:,步骤2 计算前、后向残差,步骤3 求中间系数,步骤4 计算反射系数:,步骤5 计算预测误差功率:,步骤6 令 ,重做步骤2-5, 直到预测误差功率很小为止.,25,内 容,最优滤波理论与Wiener滤波器 梯度下降算法 横向LMS自适应滤波器 横向RLS自适应滤波器 Kalman滤波器 自适应格型滤波器 自适应格-梯型滤波器 无限脉冲响应自适应滤波器 盲自适应滤波器 自适应滤波器的应用,自适应格-梯型滤波器,预备知识 算法原理,基本方程 更新方程 - 阶更新方程 - 时间更新方程 输出估计,算法步骤,自适应格-梯型滤波器,预备知识,分块矩阵求逆引理 设有分块矩阵:,则有,或,其中,自适应格-梯型滤波器,预备知识,数据向量与预测系数向量 考虑数据向量,则存在两种不同的分块方式,分别对应于前向预测和后向预测。 定义前向预测系数向量和后向预测系数向量,即,自适应格-梯型滤波器,算法原理,基本方程 1)数据向量 a)对于前向预测:,b)对于后向预测:,自适应格-梯型滤波器,算法原理,基本方程 2)预测误差 (l=0,1,n) a)对于前向预测:,b)对于后向预测:,c)对于联合估计:,自适应格-梯型滤波器,算法原理,基本方程 3)代价函数(预测误差加权平方和) a)对于于前向预测:,b)对于后向预测:,c)对于联合估计:,自适应格-梯型滤波器,算法原理,基本方程 4)最小代价函数 对于前向预测:,对于后向预测:,自适应格-梯型滤波器,算法原理,基本方程 5)W-H方程与Wiener解 a)对于前向预测:,b)对于后向预测:,c)对于联合估计:,自适应格-梯型滤波器,算法原理,基本方程 6)联合方程(联合最小代价函数和W-H方程) 对于前向预测:,对于后向预测:,自适应格-梯型滤波器,算法原理,基本方程 7) 自相关矩阵 对于前向预测:,对于后向预测:,自适应格-梯型滤波器,算法原理,基本方程 8)互相关向量 a)对于前向预测:,b)对于后向预测:,c)对于联合估计:,自适应格-梯型滤波器,算法原理,基本方程 9) 期望响应加权平方和,对于后向预测:,对于前向预测:,自适应格-梯型滤波器,算法原理,基本方程,10) Kalman增益向量,自适应格-梯型滤波器,算法原理,阶更新方程 11)相关矩阵逆矩阵 对于前向预测:,对于后向预测:,自适应格-梯型滤波器,算法原理,阶更新方程 12)预测系数向量,后向预测:,联合估计:,前向预测:,自适应格-梯型滤波器,算法原理,阶更新方程 13)最小代价函数 对于前向预测:,对于后向预测:,自适应格-梯型滤波器,算法原理,阶更新方程 14) 误差函数 a)对于前向预测:,b)对于后向预测:,c)对于联合估计:,其中,其中,其中,自适应格-梯型滤波器,算法原理,时间更新方程 15)预测系数向量 对于前向预测:,对于后向预测:,自适应格-梯型滤波器,算法原理,时间更新方程 km(n)的更新方程 考虑,其中,由此导出,定义,则有,其中,自适应格-梯型滤波器,算法原理,时间更新方程 的更新方程,其中,因为,由此可导出,自适应格-梯型滤波器,算法原理,的阶更新方程,Kalman增益向量可以写为,由上式及(16-17)得,Kalman增益向量还可写为,再注意到,由(22)-(24)得,自适应格-梯型滤波器,算法原理,输出估计 由(2c)和(14c),可见,系统
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业宿舍买卖协议书
- 光伏安全合同协议书
- 业务资金委托协议书
- 入股清算协议书范本
- 会计投资协议书模板
- 事业位编制合同范本
- 合同变更3方协议书
- 中学节约用电协议书
- 全国物业费合同范本
- 排水系统分区水质监测与改善方案
- 通用机场业务简介课件
- 人教精通版五年级上册英语Lesson-19精编课件
- 人教版小学五年级语文上册期中试卷及答案
- 思想道德与法治第二章
- 工程结构荷载和可靠度设计原理课件
- 外观限度样品管理办法样板
- GJB9001C装备研制过程控制程序含完整表单
- 企业安全生产责任落实情况检查表
- 光伏区电气安装工程质量验收与评定范围划分表
- 《银行支持地方经济发展发言稿五篇材料》
- EnergyPlus+能源管理解决方案+for+SA
评论
0/150
提交评论