y=ax2+c的图象和性质.ppt_第1页
y=ax2+c的图象和性质.ppt_第2页
y=ax2+c的图象和性质.ppt_第3页
y=ax2+c的图象和性质.ppt_第4页
y=ax2+c的图象和性质.ppt_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,二次函数y=ax2+c 的图象和性质,根据左边已画好的函数图象填空: 抛物线y= -2x2的顶点坐标是 , 对称轴是 , 在 侧,即x_0时, y随着x的增大而增大; 在 侧,即x_0时, y随着x的增大而减小. 当x= 时,函数y有最大值是_. 当x_0时,y0,(0,0),Y轴,Y轴右,Y轴左,0,0,根据左边已画好的函数图象填空: 抛物线y= 2x2的顶点坐标是 , 对称轴是 , 在 侧,即x_0时, y随着x的增大而减少; 在 侧,即x_0时, y随着x的增大而增大. 当x= 时,函数y最小值是_. 当x_0时,y0,(0,0),直线x=0,Y轴右,Y轴左,0,0,1、函数y=2x2的图象的开口 ,对称轴 ,顶点是 ;,2、函数y=3x2的图象的开口 ,对称轴 ,顶点是 ;,向上,向下,y轴,y轴,(0,0),(0,0),练习巩固,二次函数的图像,例2. 在同一直角坐标系中,画出二次函数y=x2+1和y=x2 1的图像,解: 先列表,然后描点画 图,得到y= x21,y=x21的图像.,y=x2+1,y=x21,(1) 抛物线y=x2+1,y=x21的开口方向、对称轴、顶点各是什么?,讨论,抛物线y=x2+1:,开口向上,顶点为(0,1).,对称轴是y轴,抛物线y=x21:,开口向上,顶点为(0, 1).,对称轴是y轴,y=x2+1,y=x21,二次函数的图像,抛物线y=x2+1,y=x21与抛物线y=x2的关系:,y=x2+1,抛物线y=x2,抛物线 y=x21,向上平移 1个单位,把抛物线y=2x2向上平移5个单位,会得到那条抛物线?向下平移3.4个单位呢?,抛物线y=x2,向下平移 1个单位,思考,(1)得到抛物线y=2x2+5,(2)得到抛物线y=2x23.4,y=x21,y=x2,抛物线 y=x2+1,例题,抛物线y= x2向下平移个单位后,所得抛物线为 ,再向上平移个单位后,所得抛物线为 .,(2)抛物线y=x2+1,y=x21与抛物线y=x2的异同点:,y=x2+1,y=x21,y=x2,相同点:,形状大小相同,开口方向相同,对称轴相同,不同点:,顶点的位置不同, 抛物线的位置也不同,归纳,一般地,抛物线y=ax2+c有如下特点:,(1)对称轴是y轴;,(2)顶点是(0,c).,c0,向上平移; c0,向下平移.,(3)抛物线y=ax2+c可以由抛物线y=ax2向上或向下平移|c|个单位得到.,(1)抛物线y= 2x2+3的顶点坐标是 ,对称轴是 ,在_ 侧,y随着x的增大而增大;在 侧,y随着x的增大而减小,当x= _ 时,函数y的值最大,最大值是 ,它是由抛物线y= 2x2线怎样平移得到的_.,练习,( 2)抛物线 y= x-5 的顶点坐标是_,对称轴是_,在对称轴的左侧,y随着x的 ;在对称轴的右侧,y随着x的 ,当x=_时,函数y的值最_,最小值是 .,1、若将抛物线y=-2x2-2的图象的顶点移到原点,则下列平移方法正确的是( ) A、向上平移2个单位 B、向下平移2个单位 C、向左平移2个单位 D、向右平移2个单位,A,抛物线y=ax2c与y=x2的形状大小,开口方向都相同,且其顶点坐标是(,),则其表达式为 ,它是由抛物线y=x2向 平移 个单位得到的,例题,y=x2,上,抛物线y=ax2c与y=x2的形状相同,且其顶点坐标是 (,),则其表达式为 ,,例题,y=x2,或y=x2,、在直角坐标系中,二次函数y=3x2+2的图象大致是下图中的( ),A,B,C,D,练习,A,x,0,y,0,x,y,x,0,y,0,x,y,3、抛物线y=-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论