




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
主要性质等和性:等差数列若则推论:若则即:首尾颠倒相加,则和相等等积性:等比数列若则推论:若则即:首尾颠倒相乘,则积相等其它性质1、等差数列中连续项的和,组成的新数列是等差数列。即:等差,公差为则有2、从等差数列中抽取等距离的项组成的数列是一个等差数列。如:(下标成等差数列)3、等差,则,也等差。4、等差数列的通项公式是的一次函数,即:() 等差数列的前项和公式是一个没有常数项的的二次函数,即:()5、项数为奇数的等差数列有:项数为偶数的等差数列有:,6、则则则1、等比数列中连续项的和,组成的新数列是等比数列。即:等比,公比为。 2、从等比数列中抽取等距离的项组成的数列是一个等比数列。如:(下标成等差数列)3、等比,则,也等比。其中4、等比数列的通项公式类似于的指数函数,即:,其中等比数列的前项和公式是一个平移加振幅的的指数函数,即:5、等比数列中连续相同项数的积组成的新数列是等比数列。证明方法证明一个数列为等差数列的方法:1、定义法:2、中项法:证明一个数列为等比数列的方法:1、定义法:2、中项法:设元技巧三数等差:四数等差:三数等比:四数等比:联系1、若数列是等差数列,则数列是等比数列,公比为,其中是常数,是的公差。2、若数列是等比数列,且,则数列是等差数列,公差为,其中是常数且,是的公比。数列的项与前项和的关系:数列求和的常用方法:1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。2、错项相减法:适用于差比数列(如果等差,等比,那么叫做差比数列)即把每一项都乘以的公比,向后错一项,再对应同次项相减,转化为等比数列求和。3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。适用于数列和(其中等差)可裂项为:,等差数列前项和的最值问题:1、若等差数列的首项,公差,则前项和有最大值。()若已知通项,则最大;()若已知,则当取最靠近的非零自然数时最大;2、若等差数列的首项,公差,则前项和有最小值()若已知通项,则最小;()若已知,则当取最靠近的非零自然数时最小;数列通项的求法:公式法:等差数列通项公式;等比数列通项公式。已知(即)求,用作差法:。已知求,用作商法:。已知条件中既有还有,有时先求,再求;有时也可直接求。若求用累加法:。已知求,用累乘法:。已知递推关系求,用构造法(构造等差、等比数列)。特别地,(1)形如、(为常数)的递推数列都可以用待定系数法转化为公比为的等比数列后,再求;形如的递推数列都可以除以得到一个等差数列后,再求。(2)形如的递推数列都可以用倒数法求通项。(3)形如的递推数列都可以用对数法求通项。(7)(理科)数学归纳法。(8)当遇到时,分奇数项偶数项讨论,结果可能是分段形式。数列求和的常用方法:(1)公式法:等差数列求和公式;等比数列求和公式。(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。 (3)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法).(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前和公式的推导方法).(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:; ;,; ;二、解题方法:求数列通项公式的常用方法:1、公式法2、 3、求差(商)法 解: 练习 4、叠乘法 解: 5、等差型递推公式 练习 6、等比型递推公式 练习 7、倒数法 数列前n项和的常用方法:1、公式法:等差、等比前n项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 咨询公司岗位晋升方案
- 建筑方案设计阐释范文模板
- 方案设计建筑角度分析图
- 精益化企业营销方案模板
- 银行赠送对联活动方案策划
- 隆回金银花营销策略方案
- 湖北节日活动策划方案公司
- 感冒药营销模式优化方案
- 咨询灭虫方案
- 厌学症的咨询方案
- 2025呼和浩特粮油收储有限公司招聘18名工作人员考试参考题库及答案解析
- 抖音达人签约合同协议书
- 新22J01 工程做法图集
- 2024年社区警务规范考试题库
- 《运动训练学》(第二版)PPT
- GB/T 38207-2019中国地理实体通名汉语拼音字母拼写规则
- GB/T 14181-2010测定烟煤粘结指数专用无烟煤技术条件
- DISC性格特质分析课件
- 丹佛斯变频器modbus通讯
- (中职)氯碱PVC生产工艺及设备8项目八 PVC生产教学课件
- GB∕T 21448-2017 埋地钢质管道阴极保护技术规范
评论
0/150
提交评论