2014-2015年孝感市孝南区八年级下期中数学试卷及答案解析.pdf_第1页
2014-2015年孝感市孝南区八年级下期中数学试卷及答案解析.pdf_第2页
2014-2015年孝感市孝南区八年级下期中数学试卷及答案解析.pdf_第3页
2014-2015年孝感市孝南区八年级下期中数学试卷及答案解析.pdf_第4页
2014-2015年孝感市孝南区八年级下期中数学试卷及答案解析.pdf_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2014-2015 学年湖北省孝感市孝南区八年级(下)期中数学试卷学年湖北省孝感市孝南区八年级(下)期中数学试卷 一、精心选择,一锤定音! (本题一、精心选择,一锤定音! (本题 10 小题,每小题小题,每小题 3 分,共分,共 30 分,每小题只有一个选项是分,每小题只有一个选项是 正确的)正确的) 1 (3 分) (2014连云港)计算的结果是( ) A 3 B 3 C 9 D 9 2 (3 分) (2013武汉)式子在实数范围内有意义,则 x 的取值范围是( ) A x1 B x1 C x1 D x1 3 (3 分) (2015 春孝南区期中)下列各组数能成为直角三角形三边的是( ) A 3 2、42、52 B 、 、 C 、2、 D 、 、1 4 (3 分) (2015 春孝南区期中)下列各式中,属于最简二次根式的是( ) A B C D 5 (3 分) (2012怀化) 等腰三角形的底边长为 6, 底边上的中线长为 4, 它的腰长为 ( ) A 7 B 6 C 5 D 4 6 (3 分) (2015 春孝南区期中)已知 ABC 的各边长度分别为 3cm、4cm、5cm,则连接 各边中点的三角形周长为( ) A 2cm B 7cm C 5cm D 6cm 7 (3 分) (2014重庆)如图,在矩形 ABCD 中,对角线 AC,BD 相交于点 O,ACB=30, 则AOB的大小为( ) A 30 B 60 C 90 D 120 8 (3 分) (2013怀化) 如图, 在菱形 ABCD 中,AB=3, ABC=60, 则对角线 AC= ( ) A 12 B 9 C 6 D 3 9 (3 分) (2007茂名)如图是一个圆柱形饮料罐,底面半径是 5,高是 12,上底面中心有 一个小圆孔, 则一条到达底部的直吸管在罐内部分 a 的长度 (罐壁的厚度和小圆孔的大小忽 略不计)范围是( ) A 12a13 B 12a15 C 5a12 D 5a13 10 (3 分) (2014宜宾) 如图, 将 n 个边长都为 2 的正方形按如图所示摆放, 点 A1, A2, An 分别是正方形的中心,则这 n 个正方形重叠部分的面积之和是( ) A n B n1 C ( )n 1 D n 二、耐心填空,准确无误(每题二、耐心填空,准确无误(每题 3 分,共计分,共计 18 分)分) 11 (3 分) (2014 春淄川区期末)计算= 12 (3 分) (2013潍坊)如图,ABCD 是对角线互相垂直的四边形,且 OB=OD,请你添加 一个适当的条件 ,使 ABCD 成为菱形(只需添加一个即可) 13 (3 分) (2004乌鲁木齐)如图,已知 OA=OB,那么数轴上点 A 所表示的数 是 14 (3 分) (2015 春宜春期末) 已知 y=+3, 则 2xy 的值为 15(3 分)(2015 春孝南区期中) 直角三角形的两边长为 5 和 7, 则第三边长为 16 (3 分) (2014资阳)如图,在边长为 4 的正方形 ABCD 中,E 是 AB边上的一点,且 AE=3,点 Q 为对角线 AC 上的动点,则 BEQ 周长的最小值为 三、用心做一做,显显你的能力(本大题共三、用心做一做,显显你的能力(本大题共 8 小题,共小题,共 72 分)分) 17 (8 分) (2015 春孝南区期中) (+)2 18 (8 分) (2010湘潭)先化简,再求值: 19 (8 分) (2015 春孝南区期中)如图,直角三角形纸片 ABC,C=90,AC=6,BC=8 (1)作图:用尺规作 AB的垂直平分线,交 BC 于 D,交 AB于 H (保留作图痕迹) (2)在满足(1)的情况下,求 BD 的长 20 (8 分) (2014温州)如图,在所给方格纸中,每个小正方形边长都是 1,标号为, ,的三个三角形均为格点三角形(顶点在方格顶点处) ,请按要求将图甲、图乙中的 指定图形分割成三个三角形,使它们与标号为,的三个三角形分别对应全等 (1)图甲中的格点正方形 ABCD; (2)图乙中的格点平行四边形 ABCD 注:分割线画成实线 21 (8 分) (2015 春孝南区期中)阅读下列材料,并解决相应问题: 阅读:分母有理化就是把分母中的根号化去 例如:=+ 应用:用上述类似的方法化简下列各式: (1) (2)+ 22 (10 分) (2015 春孝南区期中)在海洋上有一近似于四边形的岛屿,其平面图如图,小 明据此构造出该岛的一个数学模型(如图四边形 ABCD)来求岛屿的面积,其中 B=D=90,AB=BC=15 千米,CD=3千米,请求出四边形 ABCD 的面积 (结果保留 根号) 23 (10 分) (2015 春孝南区期中)已知矩形 ABCD 中,M、N 分别是 AD、BC 的中点,E、 F 分别是线段 BM、CM 的中点 (1)求证: ABMDCM; (2)判断四边形 MENF 是 (只写结论,不需证明) ; (3)在(1) (2)的前提下,当等于多少时,四边形 MENF 是正方形,并给予证明 24 (12 分) (2015 春孝南区期中)已知:如图(1)四边形 ABCD 和四边形 GCEF 为正方 形,B、C、E 在同一直线 (1)试判断 BG、DE 的位置关系,请直接写出结论: ; (2)若正方形 GCEF 绕 C 点顺时针旋转到图(2)的位置, (1)的结论是否仍成立?若成 立,给予证明,若不成立?请说明理由 (3)在图(2)中,若正方形 ABCD 的边长为 6,正方形 CEFG 边长为 3,连结 BE,DG 求 BE2+DG2的值 2014-2015 学年湖北省孝感市孝南区八年级(下)期中数学年湖北省孝感市孝南区八年级(下)期中数 学试卷学试卷 参考答案与试题解析参考答案与试题解析 一、精心选择,一锤定音! (本题一、精心选择,一锤定音! (本题 10 小题,每小题小题,每小题 3 分,共分,共 30 分,每小题只有一个选项是分,每小题只有一个选项是 正确的)正确的) 1 (3 分) (2014连云港)计算的结果是( ) A 3 B 3 C 9 D 9 考点: 二次根式的性质与化简菁优网 版 权所 有 专题: 计算题 分析: 原式利用二次根式的化简公式计算即可得到结果 解答: 解:原式=|3|=3 故选:B 点评: 此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键 2 (3 分) (2013武汉)式子在实数范围内有意义,则 x 的取值范围是( ) A x1 B x1 C x1 D x1 考点: 二次根式有意义的条件菁优网 版 权所 有 分析: 根据二次根式的性质,被开方数大于等于 0,解不等式即可 解答: 解:根据题意得:x10,即 x1 时,二次根式有意义 故选:B 点评: 主要考查了二次根式的意义和性质概念:式子(a0)叫二次根式性质:二次 根式中的被开方数必须是非负数,否则二次根式无意义 3 (3 分) (2015 春孝南区期中)下列各组数能成为直角三角形三边的是( ) A 3 2、42、52 B 、 、 C 、2、 D 、 、1 考点: 勾股定理的逆定理菁优网 版 权所 有 分析: 分别计算每一组中,较小两数的平方和,看是否等于最大数的平方,若等于就是直角 三角形,否则就不是直角三角形 解答: 解:A、因为(32)2+(42)2(52)2,所以不能构成直角三角形,此选项错误; B、因为( )2+( )2( )2,所以不能构成直角三角形,此选项错误; C、因为()2+22()2,所以不能构成直角三角形,此选项错误; D、因为( )2+( )2=12,能构成直角三角形,此选项正确 故选 D 点评: 本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形 的三边, 判断的方法是: 计算两个较小的数的平方和是否等于最大数的平方即可判断 4 (3 分) (2015 春孝南区期中)下列各式中,属于最简二次根式的是( ) A B C D 考点: 最简二次根式菁优网 版 权所 有 分析: 判定一个二次根式是不是最简二次根式的方法, 就是逐个检查最简二次根式的两个条 件是否同时满足,同时满足的就是最简二次根式,否则就不是 解答: 解:A、被开方数含开的尽的因数,故 A 错误; B、被开方数含分母,故 B错误; C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故 C 正确; D、被开方数含开的尽的因数,故 D 错误; 故选:C 点评: 本题考查最简二次根式的定义根据最简二次根式的定义,最简二次根式必须满足两 个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式 5 (3 分) (2012怀化) 等腰三角形的底边长为 6, 底边上的中线长为 4, 它的腰长为 ( ) A 7 B 6 C 5 D 4 考点: 勾股定理;等腰三角形的性质菁优网 版 权所 有 专题: 压轴题 分析: 根据等腰三角形的性质可知 BC 上的中线 AD 同时是 BC 上的高线,根据勾股定理求 出 AB的长即可 解答: 解:等腰三角形 ABC 中,AB=AC,AD 是 BC 上的中线, BD=CD= BC=3,AD 同时是 BC 上的高线, AB=5, 故选 C 点评: 本题考查勾股定理及等腰三角形的性质解题关键是得出中线 AD 是 BC 上的高线, 难度适中 6 (3 分) (2015 春孝南区期中)已知 ABC 的各边长度分别为 3cm、4cm、5cm,则连接 各边中点的三角形周长为( ) A 2cm B 7cm C 5cm D 6cm 考点: 三角形中位线定理菁优网 版 权所 有 分析: 根据三角形的中位线平行于第三边并且等于第三边的一半可得中点三角形的周长等 于原三角形的周长的一半求解即可 解答: 解:ABC 的周长=3+4+5=12cm, 连接各边中点的三角形周长= 12=6cm 故选 D 点评: 本题考查了三角形的中位线平行于第三边并且等于第三边的一半, 熟记定理并判断出 中点三角形的周长等于原三角形的周长的一半是解题的关键 7 (3 分) (2014重庆)如图,在矩形 ABCD 中,对角线 AC,BD 相交于点 O,ACB=30, 则AOB的大小为( ) A 30 B 60 C 90 D 120 考点: 矩形的性质菁优网 版 权所 有 专题: 几何图形问题 分析: 根据矩形的对角线互相平分且相等可得 OB=OC,再根据等边对等角可得 OBC=ACB,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计 算即可得解 解答: 解:矩形 ABCD 的对角线 AC,BD 相交于点 O, OB=OC, OBC=ACB=30, AOB=OBC+ACB=30+30=60 故选:B 点评: 本题考查了矩形的性质, 等边对等角的性质以及三角形的一个外角等于与它不相邻的 两个内角的和的性质,熟记各性质是解题的关键 8 (3 分) (2013怀化) 如图, 在菱形 ABCD 中,AB=3, ABC=60, 则对角线 AC= ( ) A 12 B 9 C 6 D 3 考点: 菱形的性质;等边三角形的判定与性质菁优网 版 权所 有 分析: 根据菱形的性质及已知可得 ABC 为等边三角形,从而得到 AC=AB 解答: 解:四边形 ABCD 是菱形, AB=BC, ABC=60, ABC 为等边三角形, AC=AB=3 故选 D 点评: 本题考查了菱形的性质和等边三角形的判定,难度一般,解答本题的关键是掌握菱形 四边相等的性质 9 (3 分) (2007茂名)如图是一个圆柱形饮料罐,底面半径是 5,高是 12,上底面中心有 一个小圆孔, 则一条到达底部的直吸管在罐内部分 a 的长度 (罐壁的厚度和小圆孔的大小忽 略不计)范围是( ) A 12a13 B 12a15 C 5a12 D 5a13 考点: 勾股定理的应用菁优网 版 权所 有 专题: 压轴题 分析: 最短距离就是饮料罐的高度,最大距离可根据勾股定理解答 解答: 解:a 的最小长度显然是圆柱的高 12,最大长度根据勾股定理,得:=13 即 a 的取值范围是 12a13 故选:A 点评: 主要是运用勾股定理求得 a 的最大值,此题比较常见,难度不大 10 (3 分) (2014宜宾) 如图, 将 n 个边长都为 2 的正方形按如图所示摆放, 点 A1, A2, An 分别是正方形的中心,则这 n 个正方形重叠部分的面积之和是( ) A n B n1 C ( )n 1 D n 考点: 正方形的性质;全等三角形的判定与性质菁优网 版 权所 有 专题: 规律型 分析: 根据题意可得,阴影部分的面积是正方形的面积的 ,已知两个正方形可得到一个阴 影部分,则 n 个这样的正方形重叠部分即为(n1)个阴影部分的和 解答: 解:由题意可得一个阴影部分面积等于正方形面积的 ,即是 4=1, 5 个这样的正方形重叠部分(阴影部分)的面积和为:14, n 个这样的正方形重叠部分(阴影部分)的面积和为:1(n1)=n1 故选:B 点评: 此题考查了正方形的性质,解决本题的关键是得到 n 个这样的正方形重叠部分(阴影 部分)的面积和的计算方法,难点是求得一个阴影部分的面积 二、耐心填空,准确无误(每题二、耐心填空,准确无误(每题 3 分,共计分,共计 18 分)分) 11 (3 分) (2014 春淄川区期末)计算= 考点: 二次根式的加减法菁优网 版 权所 有 分析: 先进行二次根式的化简,然后合并 解答: 解:原式=3= 故答案为: 点评: 本题考查了二次根式的加减法, 解答本题的关键是掌握二次根式的化简以及同类二次 根式的合并 12 (3 分) (2013潍坊)如图,ABCD 是对角线互相垂直的四边形,且 OB=OD,请你添加 一个适当的条件 OA=OC ,使 ABCD 成为菱形(只需添加一个即可) 考点: 菱形的判定菁优网 版 权所 有 专题: 开放型 分析: 可以添加条件 OA=OC,根据对角线互相垂直平分的四边形是菱形可判定出结论 解答: 解:OA=OC, OB=OD,OA=OC, 四边形 ABCD 是平行四边形, ACBD, 平行四边形 ABCD 是菱形, 故答案为:OA=OC 点评: 此题主要考查了菱形的判定,关键是掌握菱形的判定定理 13 (3 分) (2004乌鲁木齐) 如图, 已知 OA=OB, 那么数轴上点 A 所表示的数是 考点: 勾股定理;实数与数轴菁优网 版 权所 有 分析: 首先根据勾股定理得:OB=即 OA=又点 A 在数轴的负半轴上,则点 A 对 应的数是 解答: 解:由图可知,OC=2,作 BCOC,垂足为 C,取 BC=1, 故 OB=OA=, A 在 x 的负半轴上, 数轴上点 A 所表示的数是 故答案为: 点评: 熟练运用勾股定理,同时注意根据点的位置以确定数的符号 14 (3 分) (2015 春宜春期末)已知 y=+3,则 2xy 的值为 15 考点: 二次根式有意义的条件菁优网 版 权所 有 分析: 根据非负数的性质列式求出 x 的值,再求出 y 的值,然后代入代数式进行计算即可得 解 解答: 解:根据题意得,2x50 且 52x0, 解得 x 且 x , 所以,x= , y=3, 所以,2xy=2 (3)=15 故答案为:15 点评: 本题考查的知识点为:二次根式的被开方数是非负数 15 (3 分) (2015 春孝南区期中)直角三角形的两边长为 5 和 7,则第三边长为 2或 考点: 勾股定理菁优网 版 权所 有 专题: 分类讨论 分析: 分 7 为斜边与 7 为直角边两种情况考虑,分别利用勾股定理即可求出第三边 解答: 解:若 7 为斜边,根据勾股定理得:第三边为=2; 若 7 为直角边,根据勾股定理得:第三边为=, 故答案为:2或 点评: 此题考查了勾股定理,熟练掌握勾股定理是解本题的关键 16 (3 分) (2014资阳)如图,在边长为 4 的正方形 ABCD 中,E 是 AB边上的一点,且 AE=3,点 Q 为对角线 AC 上的动点,则 BEQ 周长的最小值为 6 考点: 轴对称-最短路线问题;正方形的性质菁优网 版权 所 有 专题: 计算题 分析: 连接 BD,DE,根据正方形的性质可知点 B与点 D 关于直线 AC 对称,故 DE 的长即 为 BQ+QE 的最小值,进而可得出结论 解答: 解:连接 BD,DE, 四边形 ABCD 是正方形, 点 B与点 D 关于直线 AC 对称, DE 的长即为 BQ+QE 的最小值, DE=BQ+QE=5, BEQ 周长的最小值=DE+BE=5+1=6 故答案为:6 点评: 本题考查的是轴对称最短路线问题,熟知轴对称的性质是解答此题的关键 三、用心做一做,显显你的能力(本大题共三、用心做一做,显显你的能力(本大题共 8 小题,共小题,共 72 分)分) 17 (8 分) (2015 春孝南区期中) (+)2 考点: 二次根式的加减法菁优网 版 权所 有 分析: 先把二次根式为最简二次根式,再计算即可 解答: 解:原式=2+ = 点评: 本题考查了二次根式的加减运算,把二次根式化为最简二次根式是解题的关键 18 (8 分) (2010湘潭)先化简,再求值: 考点: 二次根式的化简求值;分式的化简求值菁优网 版 权所 有 分析: 此题要对代数式先通分,最简公分母是 xy(x+y) ,再相减,能够熟练运用因式分解 的方法进行约分 代值的时候,熟练合并同类二次根式 解答: 解:原式= = = = 当时, = 点评: 此题综合考查了二次根式的混合运算和二次根式的加减运算 19 (8 分) (2015 春孝南区期中)如图,直角三角形纸片 ABC,C=90,AC=6,BC=8 (1)作图:用尺规作 AB的垂直平分线,交 BC 于 D,交 AB于 H (保留作图痕迹) (2)在满足(1)的情况下,求 BD 的长 考点: 作图基本作图;线段垂直平分线的性质菁优网 版权 所 有 分析: (1)垂直平分线的作法为:将圆规的圆心分别处于线段的两端,各做一个圆弧(半 径大于线段长的一半) ,并让其相交,将其交点相连即为该线段垂直平分线; (2) 首先利用勾股定理求得斜边的长, 从而求得 BH 的长, 然后利用 BHDBCA 求得 BD 的长即可 解答: 解: (1)如图: (2)C=90,AC=6,BC=8, AB=10, HD 垂直平分 AB, AH=BH=5, BHDBCA, , 即:, 解得:BD= 点评: 本题考查了尺规作图的知识,要牢记:将圆规的圆心分别处于线段的两端,各做一个 圆弧(半径大于线段长的一半) ,并让其相交,将其交点相连即为该线段垂直平分线; 20 (8 分) (2014温州)如图,在所给方格纸中,每个小正方形边长都是 1,标号为, ,的三个三角形均为格点三角形(顶点在方格顶点处) ,请按要求将图甲、图乙中的 指定图形分割成三个三角形,使它们与标号为,的三个三角形分别对应全等 (1)图甲中的格点正方形 ABCD; (2)图乙中的格点平行四边形 ABCD 注:分割线画成实线 考点: 作图应用与设计作图菁优网 版权 所 有 专题: 作图题 分析: (1)利用三角形的形状以及各边长进而拼出正方形即可; (2)利用三角形的形状以及各边长进而拼出平行四边形即可 解答: 解: (1)如图甲所示: (2)如图乙所示: 点评: 此题主要考查了应用设计与作图, 利用网格结合三角形各边长得出符合题意的图形是 解题关键 21 (8 分) (2015 春孝南区期中)阅读下列材料,并解决相应问题: 阅读:分母有理化就是把分母中的根号化去 例如:=+ 应用:用上述类似的方法化简下列各式: (1) (2)+ 考 点: 分母有理化菁优网 版 权所 有 专 题: 阅读型 分 析: (1)根据分式的性质,分子分母都乘以分母两个数的和,可得答案; (2)根据分式的性质,分子分母都乘以分母两个数的和,可得实数的运算,根据实数 的运算,可得答案 解 答: 解: (1)原式= =+; (2)原式 =+ =1+ =1 点 评: 本题考查了分母有理化,利用分式的性质:分子分母都乘以分母分母两个数的和或差得 出平方差是解题关键 22 (10 分) (2015 春孝南区期中)在海洋上有一近似于四边形的岛屿,其平面图如图,小 明据此构造出该岛的一个数学模型(如图四边形 ABCD)来求岛屿的面积,其中 B=D=90,AB=BC=15 千米,CD=3千米,请求出四边形 ABCD 的面积 (结果保留 根号) 考点: 勾股定理的应用菁优网 版 权所 有 分析: 连接 AC,根据 AB=BC=15 千米,B=90得到BAC=ACB=45 AC=15,再根 据D=90利用勾股定理求得 AD 的长后即可求面积; 解答: 解:连接 AC AB=BC=15 千米,B=90 BAC=ACB=45 AC=15千米, 又D=90, AD=12(千米) 面积=S ABC+S ADC=112.5+18(平方千米) 点评: 本题考查了解直角三角形的应用,与实际问题相结合提高了同学们解题的兴趣,解题 的关键是从实际问题中整理出直角三角形并求解 23 (10 分) (2015 春孝南区期中)已知矩形 ABCD 中,M、N 分别是 AD、BC 的中点,E、 F 分别是线段 BM、CM 的中点 (1)求证: ABMDCM; (2)判断四边形 MENF 是 菱形 (只写结论,不需证明) ; (3)在(1) (2)的前提下,当等于多少时,四边形 MENF 是正方形,并给予证明 考点: 矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的性质菁优网 版 权 所有 分析: (1)由矩形的性质得出 AB=DC,A=D,再由 M 是 AD 的中点,根据 SAS 即可 证明 ABMDCM; (2)先由(1)得出 BM=CM,再由已知条件证出 ME=MF,EN、FN 是 BCM 的中 位线,即可证出 EN=FN=ME=MF,得出四边形 MENF 是菱形; (3)先证出AMB=45,同理得出DMC=45,证出BMC=90,即可得出结论 解答: (1)证明:四边形 ABCD 是矩形, A=D=90,AB=DC, M 是 AD 的中点, AM=DM, 在 ABM 和 DCM 中, , ABMDCM(SAS) ; (2)解:四边形 MEBF 是菱形;理由如下: 由(1)得: ABMDCM, BM=CM, E、F 分别是线段 BM、CM 的中点, ME=BE= BM,MF=CF= CM, ME=MF, 又N 是 BC 的中点, EN、FN 是 BCM 的中位线, EN= CM,FN= BM, EN=FN=ME=MF, 四边形 MENF 是菱形; (3)解:当=2 时,四边形 MENF 是正方形; 证明如下:当=2 时,AB=AM, ABM 是等腰直角三角形, AMB=4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论