




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1讲 分类加法计数原理与分步乘法计数原理 1从集合0,1,2,3,4,5,6中任取两个互不相等的数a,b组成复数abi,其中虚数的个数是()A30 B42C36 D35解析:选C.因为abi为虚数,所以b0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6636个虚数2用10元、5元和1元来支付20元钱的书款,不同的支付方法有()A3种 B5种C9种 D12种解析:选C.只用一种币值有2张10元,4张5元,20张1元,共3种;用两种币值的有1张10元,2张5元;1张10元,10张1元;3张5元,5张1元;2张5元,10张1元;1张5元,15张1元,共5种;用三种币值的有1张10元,1张5元,5张1元,共1种由分类加法计数原理得,共有3519(种)3某电话局的电话号码为139,若前六位固定,最后五位数字是由6或8组成的,则这样的电话号码的个数为()A20 B25C32 D60解析:选C.依据题意知,最后五位数字由6或8组成,可分5步完成,每一步有2种方法,根据分步乘法计数原理,符合题意的电话号码的个数为2532.4用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为()A24 B48C60 D72解析:选B.先排个位,再排十位,百位,千位,万位,依次有2,4,3,2,1种排法,由分步乘法计数原理知偶数的个数为2432148.5已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A40 B16C13 D10解析:选C.分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面根据分类加法计数原理知,共可以确定8513个不同的平面6已知集合M1,2,3,N4,5,6,7,从两个集合中各选一个数作为点的坐标,则这样的坐标在直角坐标系中可表示第三、四象限内不同点的个数为()A18个 B10个C16个 D14个解析:选B.第三、四象限内点的纵坐标为负值,分2种情况讨论取M中的点作横坐标,取N中的点作纵坐标,有326种情况;取N中的点作横坐标,取M中的点作纵坐标,有414种情况综上共有6410种情况7某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从09这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有()A180种 B360种C720种 D960种解析:选D.按照车主的要求,从左到右第一个号码有5种选法,第二个号码有3种选法,其余三个号码各有4种选法因此车牌号码可选的所有可能情况有53444960(种)8直线l:1中,a1,3,5,7,b2,4,6,8若l与坐标轴围成的三角形的面积不小于10,则这样的直线的条数为()A6 B7C8 D16解析:选B.l与坐标轴围成的三角形的面积为Sab10,即ab20.当a1时,不满足;当a3时,b8,即1条当a5,7时,b4,6,8,此时a的取法有2种,b的取法有3种,则直线l的条数为236.故满足条件的直线的条数为167.故选B.9一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不重复(除交汇点O外)的不同游览线路有()A6种 B8种C12种 D48种解析:选D.从P点处进入结点O以后,游览每一个景点所走环形路线都有2个入口(或2个出口),若先游览完A景点,再进入另外两个景点,最后从Q点处出有(44)216种不同的方法;同理,若先游览B景点,有16种不同的方法;若先游览C景点,有16种不同的方法,因而所求的不同游览线路有31648(种)10如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A48 B18C24 D36解析:选D.分类讨论:第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有21224个;第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个所以正方体中“正交线面对”共有241236(个)11设集合A1,0,1,集合B0,1,2,3,定义A*B(x,y)|xAB,yAB,则A*B中元素的个数是()A7 B10C25 D52解析:选B.因为集合A1,0,1,集合B0,1,2,3,所以AB0,1,AB1,0,1,2,3,所以x有2种取法,y有5种取法,所以根据分步乘法计数原理得2510.12在如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A24种 B48种C72种 D96种解析:选C.分两种情况:(1)A,C不同色,先涂A有4种,C有3种,E有2种,B,D有1种,有43224(种)(2)A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有432248(种)综上两种情况,不同的涂色方法共有482472(种)13从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有_种(用数字作答)解析:第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人当文娱委员,有3种选法第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:先选学习委员有4种选法,再选体育委员有3种选法由分步乘法计数原理可得,不同的选法共有34336(种)答案:3614乘积(abc)(defh)(ijklm)展开后共有_项解析:由(abc)(defh)(ijklm)展开式各项都是从每个因式中选一个字母的乘积,由分步乘法计数原理可得其展开式共有34560(项)答案:6015在平面直角坐标系内,点P(a,b)的坐标满足ab,且a,b都是集合1,2,3,4,5,6中的元素又点P到原点的距离|OP|5,则这样的点P的个数为_解析:依题意可知:当a1时,b5,6,两种情况;当a2时,b5,6,两种情况;当a3时,b4,5,6,三种情况;当a4时,b3,5,6,三种情况;当a5或6时,b各有五种情况所以共有22335520种情况答案:2016已知集合A最大边长为7,且三边长均为正整数的三角形,则集合A的真子集共有_个解析:另外两个边长用x,y(x,yN*)表示,且不妨设1xy7,要构成三角形,必须xy8.当y取7时,x可取1,2,3,7,有7个三角形;当y取6时,x可取2,3,6,有5个三角形;当y取5时,x可取3,4,5,有3个三角形当y取4时,x只能取4,只有1个三角形所以所求三角形的个数为753116.其真子集共有(2161)个答案:21611在某校举行的羽毛球两人决赛中,采用5局3胜制的比赛规则,先赢3局者获胜,直到决出胜负为止若甲、乙两名同学参加比赛,则所有可能出现的情形(个人输赢局次的不同视为不同情形)共有()A6种 B12种C18种 D20种解析:选D.分三种情况:恰好打3局(一人赢3局),有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有236种情形;恰好打5局(一人前4局中赢2局,输2局,第5局赢),共有212种情形所有可能出现的情形共有261220种故选D.2定义“规范01数列”an如下:an共有2m项,其中m项为0,m项为1,且对任意k2m,a1,a2,ak中0的个数不少于1的个数若m4,则不同的“规范01数列”共有()A18个 B16个C14个 D12个解析:选C.设a1,a2,a3,ak中0的个数为t,则1的个数为kt,由2m8知,k8且tkt0,则.法一:当t1时,k1,2;当t2时,k2,3,4;当t3时,k3,4,5,6;当t4时,k4,5,6,7,8,所以“规范01数列”共有234514(个)法二:问题即是表示的区域的整点(格点)的个数,如图整点(格点)为234514个,即“规范01数列”共有14个3从集合1,2,3,10中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为_解析:当公比为2时,等比数列可为1,2,4或2,4,8;当公比为3时,等比数列可为1,3,9;当公比为时,等比数列可为4,6,9.易知公比为,时,共有2114个故共有21148(个)答案:84xyz10的正整数解的组数为_解析:可按x的值分类:当x1时,yz9,共有8组;当x2时,yz8,共有7组;当x3时,yz7,共有6组;当x4时,yz6,共有5组;当x5时,yz5,共有4组;当x6时,yx4,共有3组;当x7时,yz3,共有2组;当x8时,yz2,共有1组由分类加法计数原理可知:共有8765432136(组)答案:365由数字1,2,3,4,(1)可组成多少个三位数?(2)可组成多少个没有重复数字的三位数?(3)可组成多少个没有重复数字,且百位数字大于十位数字,十位数字大于个位数字的三位数?解:(1)百位数共有4种排法;十位数共有4种排法;个位数共有4种排法,根据分步乘法计数原理知共可组成4364个三位数(2)百位上共有4种排法;十位上共有3种排法;个位上共有2种排法,由分步乘法计数原理知共可排成没有重复数字的三位数43224(个)(3)排出的三位数分别是432、431、421、321,共4个6已知集合M3,2,1,0,1,2,若a,b,c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 青年育苗护林工程方案(3篇)
- 培训工程实施方案(3篇)
- 海上风电技术升级趋势及2025年市场规模预测报告
- 洞察2025:药品委托生产(CMO)商业模式变革与竞争格局分析报告
- 净化工程创优方案(3篇)
- 肺栓塞护理课件
- 2025年金融反欺诈技术演进趋势与大数据驱动应用报告
- 车床加工范围课件
- 数字资产管理师安全规范考核试卷及答案
- 高空作业机械操作工安全规范考核试卷及答案
- 中药处方点评培训
- 危险固体废物处理项目可行性研究报告
- 《可摘局部义齿工艺技术》考试复习题库(带答案)
- 西点制作工艺-第二版教材全套课件教学教程整本书电子教案全书教案课件
- 酸枣仁介绍课件
- 《开国大典》教学设计与指导课件(第二课时)
- 软硬结合板的设计制作与品质要求
- 乡镇报灾系统培训课件
- 如何辅导初中数学差生
- 《病史采集》课件
- 职业病危害因素评价与检测课件
评论
0/150
提交评论