




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省玉溪市玉溪第一中学2018-2019学年高二数学下学期第一次月考试题 理(含解析)一选择题(共12小题,每小题5分,共60分)1.已知全集,集合,则( )A. B. C. D. 【答案】B【解析】分析:由全集及,求出补集,找出集合的补集与集合的交集即可.详解: ,集合,又,故选B.点睛:研究集合问题,一定要抓住元素,看元素应满足的属性. 研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质是求满足属于集合或不属于集合的元素的集合.2.下列函数中与函数的奇偶性相同,且在上单调性也相同的是()A. B. C. D. 【答案】A【解析】【分析】为偶函数且在上单调递减,根据偶函数排除和;根据单调性排除.【详解】由可知函数为偶函数,且当时,函数单调递减选项:,为偶函数;当时,此时函数单调递增,根据偶函数对称性可知,函数在上单调递减,符合题意;选项:,可知函数为非奇非偶函数,不符合题意;选项:,可知函数为奇函数,不符合题意;选项:在上单调递增,不符合题意.本题正确选项:【点睛】本题考查函数单调性和奇偶性的判定,属于基础题.3.设复数z满足,则A. B. C. 1D. 【答案】C【解析】【分析】把已知等式变形,再由复数代数形式的乘除运算化简,代入复数模的计算公式求解【详解】解:由,得,故选:C【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,属基础题4.已知三棱锥的三视图如图所示,其中侧视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的体积等于()A. B. C. D. 【答案】A【解析】【分析】根据三视图还原几何体,利用体积公式直接求解即可.【详解】由三视图可得几何体直观图如下图所示:可知:平面平面,高是,其中,平面主视图是边长为的正三角形,为直角三角形,所以本题正确选项:【点睛】本题考查三视图还原几何体、锥体体积的求解,关键在于能够准确还原几何体,属于基础题.5.下列能使成立的所在区间是()A. B. C. D. 【答案】B【解析】【分析】结合函数图像,采用排除法依次排除各个选项即可.【详解】选项:时,可知错误;选项:时,可知正确;选项:时,可知错误;选项:时,可知错误.本题正确选项:【点睛】本题考查结合三角函数图像比较大小关系,可以采用特殊值的方式进行排除.6.如图是实现秦九韶算法的程序框图,若输入的,依次输入,则输出的()A. B. C. D. 【答案】C【解析】【分析】按照程序框图依次运行,直到符合时输出得结果.【详解】根据程序框图运行可知:第一次运行:,有,循环;第二次运行:,有,循环;第三次运行:,有,输出本题正确选项:【点睛】本题考查程序框图的循环结果,对于运行次数较少的题目,直接依次列举得到结果即可.7.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了次试验,根据收集到的数据(如表),零件数个 加工时间(min)由最小二乘法求得回归直线方程由于后期没有保存好,导致表中有一个数据模糊不清,请你推断出该数据的值为()A. B. C. D. 【答案】D【解析】【分析】利用回归直线恒过,将代入直线方程,求得结果.【详解】设模糊不清的数据为根据收集到的数据可得:,又,可得:解得:本题正确选项:【点睛】本题考查利用回归直线求解实际数据点的问题,解决问题的关键是明确回归直线恒过.8.已知直线与圆交于两点,是坐标原点,且,则实数的值为()A. B. 或C. 或D. 或【答案】C【解析】【分析】根据向量关系可得,由此可得圆心到直线距离为,建立方程求得结果.【详解】由可得:又为圆的圆心,则则到直线的距离为:即 本题正确选项:【点睛】本题考查直线与圆的相关问题,关键是能够利用向量的关系得到向量垂直的关系,从而能将问题转化为点到直线的距离问题.9.已知是可导函数,如图,直线是曲线在处的切线,令,是的导函数,则()A. B. C. D. 【答案】B【解析】【分析】由题意可得,求得k,求出的导数,计算可得所求值【详解】解:由直线是曲线在处的切线,曲线过可得,即有,可得,则,故选B【点睛】本题考查导数的几何意义,直线方程的运用,函数求导,考查方程思想和运算能力,属于基础题10.已知三棱锥中,平面平面,则三棱锥的外接球的表面积()A. B. C. D. 【答案】C【解析】【分析】通过取取中点,中点,可得平面,同时若为三棱锥外接球球心,则面,利用和,用勾股定理构造关于的方程,求解得到,从而得到所求表面积.【详解】由题意可得图形如下图所示:取中点,中点,连接,可知且 又平面平面,平面平面,平面平面为直角三角形 为外接圆圆心设为三棱锥外接球球心,则面则设圆的半径为,由题意可知:,则 外接球表面积本题正确选项:【点睛】本题考查三棱锥的外接球的问题,关键在于能够确定球心的大致位置,要明确球心和底面外接圆圆心的连线必与底面垂直,由此可构造出关于半径的方程,属于常规解题模型.11.已知双曲线:,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为若为直角三角形,则()A. B. C. D. 【答案】B【解析】【分析】由双曲线方程可得焦点坐标和渐近线方程,由渐近线倾斜角可知,假设,利用直角三角形边角关系求得结果.【详解】由双曲线可知:,渐近线方程为:则,则由双曲线对称性可知,设,则又,则本题正确选项:【点睛】本题考查双曲线的几何性质,关键是能够确定直角三角形的直角为,从而利用直角三角形中的边角关系得到结果.12.已知函数(为自然对数的底数)有两个极值点,则实数的取值范围是( )A. B. C. D. 【答案】A【解析】,若函数有两个极值点,则和在有2个交点,令,则,在递减,而,故时, ,即,递增,时, ,即,递减,故,而时, ,时, ,若和在有2个交点只需,点晴:本题考查函数导数与函数的极值点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可结合导数知识确定极值点和单调区间从而确定其大致图象.方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理. 恒成立问题以及可转化为恒成立问题的问题,往往可利用参变分离的方法,转化为求函数最值处理也可构造新函数然后利用导数来求解.注意利用数形结合的数学思想方法.二填空题(共4小题,每小题5分,共20分)13.已知x,y满足约束条件,则的最小值为_【答案】【解析】【分析】先根据约束条件画出可行域,再由表示直线在y轴上的截距最大即可得解.【详解】x,y满足约束条件,画出可行域如图所示.目标函数,即.平移直线,截距最大时即为所求.点A(,),z在点A处有最小值:z2,故答案为:.【点睛】本题主要考查线性规划的基本应用,利用数形结合,结合目标函数的几何意义是解决此类问题的基本方法14.曲线与直线及轴所围成的封闭图形的面积为 _【答案】【解析】【分析】根据定积分的几何意义,先联立直线与曲线方程,求出积分的上下限,将面积转化为定积分,从而可求出所围成的图形的面积.【详解】由曲线与直线构成方程组,解得,由直线与构成方程组,解得;曲线与直线及x轴所围成的封闭图形的面积为:故答案为【点睛】本题主要考查定积分的几何意义,属于中档题.一般情况下,定积分的几何意义是介于轴、曲线 以及直线之间的曲边梯形面积的代数和 ,其中在轴上方的面积等于该区间上的积分值,在轴下方的面积等于该区间上积分值的相反数,所以在用定积分求曲边形面积时,一定要分清面积与定积分是相等还是互为相反数;两条曲线之间的面积可以用两曲线差的定积分来求解.15.设等比数列满足a1+a3=10,a2+a4=5,则a1a2an的最大值为 【答案】【解析】试题分析:设等比数列的公比为,由得,解得.所以,于是当或时,取得最大值.考点:等比数列及其应用16.已知直线被抛物线截得的弦长为,直线经过的焦点,为上的一个动点,设点的坐标为,则的最小值为_【答案】【解析】【分析】把直线方程与抛物线方程联立得到根与系数的关系,利用弦长公式即可得出p与关系;再根据经过的焦点,得出p与的关系,可求出抛物线方程,进而得到的最小值.【详解】(1) 则 又直线经过的焦点,则 由此解得 抛物线方程为, 则 故当时,即答案为.【点睛】熟练掌握直线与抛物线相交问题转化为直线方程与抛物线方程联立得到根与系数的关系、弦长公式、点到直线的距离公式等是解题的关键三解答题(共6小题,共70分)17.已知函数(1)若的三个内角的对边分别为,锐角满足,求锐角的大小.(2)在(1)的条件下,若的外接圆半径为,求的面积的最大值【答案】(1);(2).【解析】【分析】(1)将化简为,代入求得;(2)根据正弦定理求得,再结合余弦定理,利用基本不等式求得最值.【详解】(1),又为锐角(2)的外接圆半径为 由正弦定理得:由余弦定理:得:即(当且仅当时取等号)则三角形的面积(当且仅当时取等号)故三角形面积最大值为【点睛】本题考查三角函数式的化简、正余弦定理解三角形、三角形面积最值问题.解决面积最值问题的关键是能够根据公式将问题变为长度之积的最值问题,从而利用基本不等式求得结果.18.已知等差数列的公差,它的前项和为,若,且成等比数列(1)求数列的通项公式;(2)设数列的前n项和为,求证:【答案】(1);(2)详见解析.【解析】【分析】(1)用和表示出和,解方程求得和,从而得到通项公式;(2)根据(1)得到的通项公式,利用裂项相消法表示出,从而证得结果.【详解】(1),即 成等比数列,可得,即有由解得则(2)证明:由(1)知:,则前项和为 由为递增数列,可得又,可得即有【点睛】本题考查等差数列通项公式的求解、裂项相消法求和的问题,属于常规题型.19.如图,设是边长为的正三角形,平面,若,是的中点(1)证明:平面;(2)求与平面所成角的正弦值. .【答案】(1)详见解析;(2).【解析】【分析】(1)取中点,连结,可证得四边形是平行四边形,证明,同时,可证得结论;(2)连结,可知即为所求角,通过长度关系得到所求正弦值.【详解】(1)证明:取中点,连结,是边长为的正三角形,是的中点,又 且四边形是平行四边形 平面 又 ,平面(2)解:连结平面 是与平面所成角是边长为的正三角形,平面,与平面所成角的正弦值为【点睛】本题考查线面垂直的证明、直线与平面所成角问题.求解线面角的关键在于能够利用垂直关系将所成角放到直角三角形中,从而能够通过长度关系求得结果.20.已知函数(1)求函数的单调区间(2)当时,证明:对任意,都有成立.【答案】(1)当时,函数在区间上单调递增;当时,函数在区间上单调递增,在区间上单调递减;(2)详见解析.【解析】【分析】(1)求导后,根据和两种情况分别判断导函数的正负,从而得到函数单调区间;(2)将问题转化为证明恒成立,通过求导得到的最小值,得到,从而证得结果.【详解】(1)函数的定义域是当时,对任意恒成立所以,函数在区间上单调递增当时,由得,由,得所以,函数在区间上单调递增,在区间上单调递减(2)时,令则时,则单调递减时,则单调递增故故,即【点睛】本题考查利用导数讨论含参数函数的单调性、恒成立不等式证明问题.解决恒成立问题的关键是能够将问题转化为函数求最值的问题,考查学生转化与化归思想的应用.21.已知椭圆:的离心率与双曲线的离心率互为倒数,且过点(1)求椭圆的方程;(2)过作两条直线与圆 相切且分别交椭圆于两点求证:直线的斜率为定值;求面积的最大值(其中为坐标原点)【答案】(1)(2) 【解析】试题分析:(1)先求双曲线离心率得椭圆离心率,再将点坐标代入椭圆方程,解方程组得,(2)先根据点斜式得直线方程,再与椭圆方程联立解得坐标,根据直线与圆相切,得斜率相反,同理可得最后根据斜率公式求斜率,设直线MN方程,根据原点到直线距离得高,与椭圆方程联立方程组结合韦达定理以及弦长公式得底边边长,最后代入三角形面积公式,利用基本不等式求最值.试题解析:(1)可得,设椭圆的半焦距为,所以, 因为C过点,所以,又,解得, 所以椭圆方程为(2) 显然两直线的斜率存在,设为,由于直线与圆相切,则有, 直线的方程为, 联立方程组消去,得,因为为直线与椭圆的交点,所以,同理,当与椭圆相交时,所以,而,所以直线的斜率 设直线的方程为,联立方程组消去得,所以, 原点到直线的距离,面积为,当且仅当时取得等号经检验,存在(),使得过点的两条直线与圆相切,且与椭圆有两个交点M,N所以面积的最大值为点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.22.选修44:坐标系与参数方程在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:=4cos .()说明C1是哪种曲线,并将C1的方程化为极坐标方程;()直线C3的极坐标方程为=0,其
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 协议书 合同封面图片
- 企业垃圾清运合同协议书
- 纺织品检验员证书的知识更新 试题及答案
- 合同协议书肾脏
- 2025年私人银行高端客户需求导向的服务模式创新报告
- 租田地合同协议书电子板
- 买卖船合同协议书怎么写
- 焊工外协协议书
- 转让中标权合同协议
- 软件维护保密合同协议
- 雕刻机安全操作规程培训课件
- 微型轴承外环外圆直径自动检测装置设计
- 2024年中国石化集团资本有限公司招聘笔试参考题库含答案解析
- 普通高中地理课程标准(2023年版)
- 检验批划分方案14
- 科普1原地浸出采铀
- 《公共管理学》期末考试复习题库(含答案)
- 接触网工程图识图 六跨电分相绝缘锚段关节安装图的识图
- 公司实际控股人协议书
- 吊装安全事故经验分享
- 研究生干细胞培训课件
评论
0/150
提交评论