8 高考压轴题-不等式证明方法.doc_第1页
8 高考压轴题-不等式证明方法.doc_第2页
8 高考压轴题-不等式证明方法.doc_第3页
8 高考压轴题-不等式证明方法.doc_第4页
8 高考压轴题-不等式证明方法.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考压轴题-不等式证明方法 郑紫灵2012.12数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力本文介绍一类与数列和有关的不等式问题。其中用的最多的是放缩法,而放缩法有四个最基本的1.先求和再放缩。(1)直接用等差或等比的求和公式求和例1求证证明:。(2). 先裂项相消求和再放缩。例2.求证证明:。例3正数数列的前项的和,满足,试求:(1)数列的通项公式;(2)设,数列的前项的和为,求证:解:(1)由已知得,时,作差得:,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以(2),所以注:一般先分析数列的通项公式如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和例4.求证证明:令,通过比较系数得到a=b=1.,例5.求证证明:令,通过比较系数得到a=1,b=2,c=3.所以,所以例6.求证证明:令,比较系数得到,例7正数数列的前项的和,满足,试求:(1)数列的通项公式;(2)设,数列的前项的和为,求证:解:(1)由已知得,时,作差得:,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以(2),所以注:一般先分析数列的通项公式如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和例8.已知数列中,满足,(1)求证:;(2)求证:解: (1) 都大于0 (2) 所以 , , 又2.添加或舍弃一些正项(或负项)例9、已知求证:分析:要证,即证,缩小成一个等比数列求和,再放缩。证明: 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩时就舍去了,从而是使和式得到化简.3.固定一部分项,放缩另外的项;例10、求证:证明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。4.改变放缩的方式例11. 已知数列中,证明:放缩一:点评:此种放缩为常规法,学生很容易想到,但需要保留前5项,从第6项开始放大,才能达到证题目的,这一点学生往往又想不到,或因意志力不坚强而放弃。需要保留前5项,说明放大的程度过大,能不能作一下调节?放缩二:点评:此种方法放大幅度较(一)小,更接近于原式,只需保留前2项,从第3项开始放大,能较容易想到,还能再进一步逼近原式?放缩三: 本题点评:随着放缩程度的不同,前面需保留不动的项数也随着发生变化,放缩程度越小,精确度越高,保留不动的项数就越少,运算越简单,因此,用放缩法解题时,放缩后的式子要尽可能地接近原式,减小放缩度,以避免运算上的麻烦。一逐一放缩法例12.设,求证:。二、利用函数单调性(导数)放缩(尤其是ln(x+1)x, lnxx-1,x+1n+.六、分类放缩 例27.求证:.例28. 已知.证明:对任意整数,有.七利用糖水不等式(即姐妹不等式)糖水不等式:糖水加糖糖更甜(a糖和水之和即溶液,b是糖即溶质,m是糖),和。例29证明:()()()()(1)。(n1,)例30证明不等式:(n1,)八、利用基本不等式放缩例31(2011年广东文科)已知数列,,证明:对于一切正整数,九

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论