遗传算法源代码.doc_第1页
遗传算法源代码.doc_第2页
遗传算法源代码.doc_第3页
遗传算法源代码.doc_第4页
遗传算法源代码.doc_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用Gaussian变异替换均匀变异,可能得到更好的效果。代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。读者可以从,目录 coe/evol中的文件prog.c中获得。要求输入的文件应该命名为gadata.txt;系统产生的输出文件为galog.txt。输入的文件由几行组成:数目对应于变量数。且每一行提供次序对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。/*/* This is a simple genetic algorithm implementation where the */* evaluation function takes positive values only and the */* fitness of an individual is the same as the value of the */* objective function */*/#include #include #include /* Change any of these parameters to match your needs */#define POPSIZE 50 /* population size */#define MAXGENS 1000 /* max. number of generations */#define NVARS 3 /* no. of problem variables */#define PXOVER 0.8 /* probability of crossover */#define PMUTATION 0.15 /* probability of mutation */#define TRUE 1#define FALSE 0int generation; /* current generation no. */int cur_best; /* best individual */FILE *galog; /* an output file */struct genotype /* genotype (GT), a member of the population */ double geneNVARS; /* a string of variables */ double fitness; /* GTs fitness */ double upperNVARS; /* GTs variables upper bound */ double lowerNVARS; /* GTs variables lower bound */ double rfitness; /* relative fitness */ double cfitness; /* cumulative fitness */;struct genotype populationPOPSIZE+1; /* population */struct genotype newpopulationPOPSIZE+1; /* new population; */ /* replaces the */ /* old generation */* Declaration of procedures used by this genetic algorithm */void initialize(void);double randval(double, double);void evaluate(void);void keep_the_best(void);void elitist(void);void select(void);void crossover(void);void Xover(int,int);void swap(double *, double *);void mutate(void);void report(void);/*/* Initialization function: Initializes the values of genes */* within the variables bounds. It also initializes (to zero) */* all fitness values for each member of the population. It */* reads upper and lower bounds of each variable from the */* input file gadata.txt. It randomly generates values */* between these bounds for each gene of each genotype in the */* population. The format of the input file gadata.txt is */* var1_lower_bound var1_upper bound */* var2_lower_bound var2_upper bound . */*/void initialize(void)FILE *infile;int i, j;double lbound, ubound;if (infile = fopen(gadata.txt,r)=NULL) fprintf(galog,nCannot open input file!n); exit(1); /* initialize variables within the bounds */for (i = 0; i NVARS; i+) fscanf(infile, %lf,&lbound); fscanf(infile, %lf,&ubound); for (j = 0; j POPSIZE; j+) populationj.fitness = 0; populationj.rfitness = 0; populationj.cfitness = 0; populationj.loweri = lbound; populationj.upperi= ubound; populationj.genei = randval(populationj.loweri, populationj.upperi); fclose(infile);/*/* Random value generator: Generates a value within bounds */*/double randval(double low, double high)double val;val = (double)(rand()%1000)/1000.0)*(high - low) + low;return(val);/*/* Evaluation function: This takes a user defined function. */* Each time this is changed, the code has to be recompiled. */* The current function is: x12-x1*x2+x3 */*/void evaluate(void)int mem;int i;double xNVARS+1;for (mem = 0; mem POPSIZE; mem+) for (i = 0; i NVARS; i+) xi+1 = populationmem.genei; populationmem.fitness = (x1*x1) - (x1*x2) + x3; /*/* Keep_the_best function: This function keeps track of the */* best member of the population. Note that the last entry in */* the array Population holds a copy of the best individual */*/void keep_the_best()int mem;int i;cur_best = 0; /* stores the index of the best individual */for (mem = 0; mem populationPOPSIZE.fitness) cur_best = mem; populationPOPSIZE.fitness = populationmem.fitness; /* once the best member in the population is found, copy the genes */for (i = 0; i NVARS; i+) populationPOPSIZE.genei = populationcur_best.genei;/*/* Elitist function: The best member of the previous generation */* is stored as the last in the array. If the best member of */* the current generation is worse then the best member of the */* previous generation, the latter one would replace the worst */* member of the current population */*/void elitist()int i;double best, worst; /* best and worst fitness values */int best_mem, worst_mem; /* indexes of the best and worst member */best = population0.fitness;worst = population0.fitness;for (i = 0; i populationi+1.fitness) if (populationi.fitness = best) best = populationi.fitness; best_mem = i; if (populationi+1.fitness = worst) worst = populationi+1.fitness; worst_mem = i + 1; else if (populationi.fitness = best) best = populationi+1.fitness; best_mem = i + 1; /* if best individual from the new population is better than */* the best individual from the previous population, then */* copy the best from the new population; else replace the */* worst individual from the current population with the */* best one from the previous generation */if (best = populationPOPSIZE.fitness) for (i = 0; i NVARS; i+) populationPOPSIZE.genei = populationbest_mem.genei; populationPOPSIZE.fitness = populationbest_mem.fitness; else for (i = 0; i NVARS; i+) populationworst_mem.genei = populationPOPSIZE.genei; populationworst_mem.fitness = populationPOPSIZE.fitness; /*/* Selection function: Standard proportional selection for */* maximization problems incorporating elitist model - makes */* sure that the best member survives */*/void select(void)int mem, i, j, k;double sum = 0;double p;/* find total fitness of the population */for (mem = 0; mem POPSIZE; mem+) sum += populationmem.fitness; /* calculate relative fitness */for (mem = 0; mem POPSIZE; mem+) populationmem.rfitness = populationmem.fitness/sum; population0.cfitness = population0.rfitness;/* calculate cumulative fitness */for (mem = 1; mem POPSIZE; mem+) populationmem.cfitness = populationmem-1.cfitness + populationmem.rfitness; /* finally select survivors using cumulative fitness. */for (i = 0; i POPSIZE; i+) p = rand()%1000/1000.0; if (p population0.cfitness) newpopulationi = population0; else for (j = 0; j = populationj.cfitness & ppopulationj+1.cfitness) newpopulationi = populationj+1; /* once a new population is created, copy it back */for (i = 0; i POPSIZE; i+) populationi = newpopulationi; /*/* Crossover selection: selects two parents that take part in */* the crossover. Implements a single point crossover */*/void crossover(void)int i, mem, one;int first = 0; /* count of the number of members chosen */double x;for (mem = 0; mem POPSIZE; +mem) x = rand()%1000/1000.0; if (x 1) if(NVARS = 2) point = 1; else point = (rand() % (NVARS - 1) + 1; for (i = 0; i point; i+) swap(&populationone.genei, &populationtwo.genei); /*/* Swap: A swap procedure that helps in swapping 2 variables */*/void swap(double *x, double *y)double temp;temp = *x;*x = *y;*y = temp;/*/* Mutation: Random uniform mutation. A variable selected for */* mutation is replaced by a random value between lower and */* upper bounds of this variable */*/void mutate(void)int i, j;double lbound, hbound;double x;for (i = 0; i POPSIZE; i+) for (j = 0; j NVARS; j+) x = rand()%1000/1000.0; if (x PMUTATION) /* find the bounds on the variable to be mutated */ lbound = populationi.lowerj; hbound = populationi.upperj; populationi.genej = randval(lbound, hbound); /*/* Report function: Reports progress of the simulation. Data */* dumped into the output file are separated by commas */*/void report(void)int i;double best_val; /* best population fitness */double avg; /* avg population fitness */double stddev; /* std. deviation of population fitness */double sum_square; /* sum of square for std. calc */double square_sum; /* square of sum for std. calc */double sum; /* total population fitness */sum = 0.0;sum_square = 0.0;for (i = 0; i POPSIZE; i+) sum += populationi.fitness; sum_square += populationi.fitness * populationi.fitness; avg = sum/(double)POPSIZE;square_sum = avg * avg * POPSIZE;stddev = sqrt(sum_square - square_sum)/(POPSIZE - 1);best_val = populationPOPSIZE.fitness;fprintf(galog, n%5d, %6.3f, %6.3f, %6.3f nn, generation, best_val, avg, stddev);/*/* Main function: Each generation involves selecting the best */* members, performing crossover & mutation and then */* evaluating the resulting population, until the terminating */* condition is satisfied */*/void main(void)int i;if (galog = fopen(galog.txt,w)=NULL) exit(1); generation = 0;fprintf(galog, n generation best average standard n);fprintf(galog, number value fitness deviation n);initialize();evaluate();keep_the_best();while(generationMAXGENS) generation+; select(); crossover(); mutate(); report(); evaluate(); elitist(); fprintf(galog,nn Simulation completedn);fprintf(galog,n Best member: n);for (i = 0; i NVARS; i+) fprintf (galog,n var(%d) = %3.3f,i,populationPOPSIZE.genei); fprintf(galog,nn Best fitness = %3.3f,populationPOPSIZE.fitness);fclose(galog);printf(Successn);/*/*/* This is a simple genetic algorithm implementation where the */* evaluation function takes positive values only and the */* fitness of an individual is the same as the value of the */* objective function */*/#include #include #include /* Change any of these parameters to match your needs */#define POPSIZE 50 /* population size */#define MAXGENS 1000 /* max. number of generations */#define NVARS 3 /* no. of problem variables */#define PXOVER 0.8 /* probability of crossover */#define PMUTATION 0.15 /* probability of mutation */#define TRUE 1#define FALSE 0int generation; /* current generation no. */int cur_best; /* best individual */FILE *galog; /* an output file */struct genotype /* genotype (GT), a member of the population */ double geneNVARS; /* a string of variables */ double fitness; /* GTs fitness */ double upperNVARS; /* GTs variables upper bound */ double lowerNVARS; /* GTs variables lower bound */ double rfitness; /* relative fitness */ double cfitness; /* cumulative fitness */;struct genotype populationPOPSIZE+1; /* population */struct genotype newpopulationPOPSIZE+1; /* new population; */ /* replaces the */ /* old generation */* Declaration of procedures used by this genetic algorithm */void initialize(void);double randval(double, double);void evaluate(void);void keep_the_best(void);void elitist(void);void select(void);void crossover(void);void Xover(int,int);void swap(double *, double *);void mutate(void);void report(void);/*/* Initialization function: Initializes the values of genes */* within the variables bounds. It also initializes (to zero) */* all fitness values for each member of the population. It */* reads upper and lower bounds of each variable from the */* input file gadata.txt. It randomly generates values */* between these bounds for each gene of each genotype in the */* population. The format of the input file gadata.txt is */* var1_lower_bound var1_upper bound */* var2_lower_bound var2_upper bound . */*/void initialize(void)FILE *infile;int i, j;double lbound, ubound;if (infile = fopen(gadata.txt,r)=NULL) fprintf(galog,nCannot open input file!n); exit(1); /* initialize variables within the bounds */for (i = 0; i NVARS; i+) fscanf(infile, %lf,&lbound); fscanf(infile, %lf,&ubound); for (j = 0;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论