数学建模结果分析_第1页
数学建模结果分析_第2页
数学建模结果分析_第3页
数学建模结果分析_第4页
数学建模结果分析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

结果分析综上所述,由模型求解可知,在满足模型条件的假设(4)的条件下,当所给阳性的先验概率时,在不分组的条件下每个人一次一次的检验可以使总次数最少;当所给时,进行一次检验比分两次组和不分组均可使总次数最少;当时,分两次组总次数比分一次组总次数要少。当固定时,为了是人群中总的检验次数最小,就需要确定每组中的人数。根据固定值的大小分类讨论:当时,此时不需要分组,即时可使检验次数最小;当时,此时需要分组,要使人群总的检验次数最小,只需要使每个人的检验次数的期望值最小,通过引入与变化趋势相同的连续性函数 ,对于一个给定的,可以求出函数的极值,又由分析知是增函数,所以求出的极值就是的最小值的取值,故取与最相近的两个值(上取整和下取整),代入,然后比较两个函数值,找出较小的一个,以此类推,可以确定,每一个给定的要使人群中总的检验次数最小所对应的人数。 在中,当时,进行一次分组检验比进行两次分组检验和不分组检验可使检验次数最少;当时,分两组比分一组总的检验次数少。模型检验当然这都是在假设(4)的前提下做出的,现举一例具体说明上述假设的合理性:设时,经过上述计算可得,当时可使在一次分组的情况下平均每人检验次数最小,为满足假设(4),可以取(此时平均每人检验次数仅比时多次,故在检验100000人时总次数才多一次,故可忽略),然后取或更小(如),此时一定可以做到分两次组比分一次组平均每人检验次数小。当然此时还可以继续求满足条件的第二次分组平均每人检验次数的最小值。由于题给条件是人群数量很大,基本是健康人,先验概率很小,所以的情况在实际当中可以不予考虑(此时的概率在0.3左右,相当大)。模型推广本模型可以说在所给定的假设内解决了该问题。如果说对于假设的合理性做出判断的话,如上所述,假设(1)在实际当中可能不会被作为分组与不分组的判断标准;假设(2)与(3)是可以接受的,直观上可以认为以阳性的先验概率至于不同疾病有关,而不会与检验次数有关,同时在没有遗传病的情况下,做出假设(3)也是合理的;假设(4)在人群数目较小时是很容易实现的,但当人群数目很大时,很难严格的达到平均分组的条件。例如对某几个地区某病毒的感染情况进行调查统计时,往往利用分治法的思想把人群按单位或更小的行政区域进行分区调查,再将所有的数字汇总。这种分组的方法并不能保证平均分配人数。如果人群总数在几十到几千的范围内除了利用给出的两种方法外,还可以利用二分法的思想将人群重复的进行二分操作,这样也可以很快地得到理想的结果。影响此模型的因素还有先验概率,先验概率是一定人群中的患病概率,如果人群的情况有所变化可能会对模型给出的结论有所影响。比如普通人群中艾滋病病毒抗体的感染率是很低的,如果用这个概率作为先验概率去进行对以男性同双性恋者为对象的估计中,往往会出现较大的偏差。同时本数学模型也可适用于某人民医院要对某地区的居民是否患有某种病(如乙肝)的检验,并对该地区的病情作一定的预测,从而达到预防和及早治疗的效果。乙肝的血样检验只有阴性、阳性两种情况,我们可用本数学模型切实地解决这个问题。模型评价在实际中利用本模型还是可以跟分组检验一定依据的。但在实际操作中,由于多次分组需要多次混合血样,在操作中会带来很大的麻烦;而且,在混合当中可能会造成很大的误差,特别是当多次混合血样比一次混合或不分组的平均每人检验次数不是少很多的时候,进行一次分组或不分组效果可能会更好。但是由于血样的先检概率通常很小,为减少检验次数,我们通过先对检验的人群进行分组,引入阳性组的概率,通过阳性组数的平均值作为桥梁,由于阳性组的人需要全部重新检验,最后可得平均总检验次数,进而得到一个人的平均检验次数的一元函数。然而我们通过对阳性组人群进行再次分组(即对检验人群进行二次分组),从而得到一个关于两次分组人数二元函数,进而得到更为优化的数学模型。最后,我们引入平均概率模型,再把血样检验中出现的可能性细化,得到当血样检验为阳性的人数等于分组后每一组的人数时,通过这样的分组模型可以使检验次数达到最优,但是我们未能给出确实的理论证明。 由此我们可以得出这样的结论,建立模型的过程中先验概率和合理假设具有非常重要的影响。比如,如果先验概率是一个特定的特定群体的概率,而在建立模型的时候把这个特定的群体的概率用到大众群体上来,就必然会导致模型预测的重大偏差。又如,如果在建立模型的时候假设不合理,如相互有影响的实践假设成独立事件,忽略了事物的内在影响,也会导致模型预测的失效,一个合理的模型,一定要建立在合理的假设之下。 在实际生活中利用本模型可以说在给定的假设内解决了该问题。如果期望对假设做出和理性的判断的话,综上所述,在实际当中可能会出现作为分组与不分组判断标准不一的情况;且在直观上可以认为阳性的先验概率与不同疾病有关,但不会与检验次数有关,并且在没有遗传病的情况下,做出某些假设也是合理的。有的假设在人群数目较少的时候比较容易实现,但当人群数目比较大时,就很难严格的达到平均分组条件。例如这样的情形之下:对某几个地区某病毒的感染情况进行调查统计时,往往利用分而治之的思想把人群按单位或更小的行政区域进行划分调查,最后将所有的数字情况汇总。这种分组的方法并不能保证平均分配人数。如果人群总数在几十到几千的范围内除了已经给出的这种方法还可以利用二分法的思想将人群进行重复的二分操作,或者其他的操作形式,这样也可以很快的得到理想的结果。 影响此模型的因素还有先验概率,先验概率是一定人群中的患病概率,有时人群的情况的变化会对模型结论的得出造成影响。比如说普通人中艾滋病毒抗体出现的概率是极其低的,如果以这个概率做为先验概率去进行对以男性或者双性性恋的对象的估计中则会出现极大的偏差。 附:数学模型中常用的检验方法1.单个总体的均值的检验:已知,关于均值的检验用ztest命令来实现.h,p,ci=ztest(x,mu,sigma,alpha,tail)已知,关于均值的检验用ttest命令来实现.h,p,ci=ttest(x,mu,alpha,tail)2.两个正态总体均值差的检验( t 检验)还可以用t 检验法检验具有相同方差的2 个正态总体均值差的假设。在Matlab 中由函数ttest2 实现,命令为:h,p,ci=ttest2(x,y,alpha,tail)3.分布拟合检验在实际问题中,有时不能预知总体服从什么类型的分布,这时就需要根据样本来检验关于分布的假设。下面介绍检验法和专用于检验分布是否为正态的“偏峰、峰度检验法”。 检验法0 H :总体x的分布函数为F(x) ,1 H : 总体x的分布函数不是F(x).在用下述 2检验法检验假设0 H 时,若在假设0 H 下F(x)的形式已知,但其参数值未知,这时需要先用极大似然估计法估计参数,然后作检验。偏度、峰度检验4其它非参数检验Wilcoxon秩和检验在Matlab中,秩和检验由函数ranksum实现。命令为:p,h=ranksum(x,y,alpha)其中x,y可为不等长向量,alpha为给定的显著水平,它必须为0和1之间的数量。p返回产生两独立样本的总体是否相同的显著性概率,h返回假设检验的结果。如果x和y的总体差别不显著,则h为零;如果x和y的总体差别显著,则h为1。如果p接近于零,则可对原假设质疑。5中位数检验在假设检验中还有一种检验方法为中位数检验,在一般的教学中不一定介绍,但在实际中也是被广泛应用到的。在Matlab中提供了这种检验的函数。函数的使用方法简单,下面只给出函数介绍。signrank函数signrank Wilcoxon符号秩检验p,h=signrank(x,y,alpha)其中p给出两个配对样本x和y的中位数相等的假设的显著性概率。向量x,y的长度必须相同,alpha为给出的显著性水平,取值为0和1之间的数。h返回假设检验的结果。如果这两个样本的中位数之差几乎为0,则h=0;若有显著差异,则h=1。signtest函数signtest 符号检验p,h= signtest(x,y,alpha)其中p给出两个配对样本x和y的中位数相等的假设的显著性概率。x和y若为向量,二者的长度必须相同;y亦可为标量,在此情况下,计算x的中位数与常数y之间的差异。alpha和h同上。matlab 判断正态分布总体分布正态性检验进行参数估计和假设检验时,通常总是假定总体服从正态分布,虽然在许多情况下这个假定是合理的,但是当要以此为前提进行重要的参数估计或假设检验,或者人们对它有较大怀疑的时候,就确有必要对这个假设进行检验,进行总体正态性检验的方法有很多种,以下针对MATLAB统计工具箱中提供的程序,简单介绍几种方法。1)Jarque-Bera检验利用正态分布的偏度g1和峰度g2,构造一个包含g1,g2的分布统计量(自由度n=2),对于显著性水平,当分布统计量小于分布的分位数时,接受H0:总体服从正态分布;否则拒绝H0,即总体不服从正态分布。这个检验适用于大样本,当样本容量n较小时需慎用。Matlab命令:h =jbtest(x),h,p,jbstat,cv =jbtest(x,alpha)。2)Kolmogorov-Smirnov检验通过样本的经验分布函数与给定分布函数的比较,推断该样本是否来自给定分布函数的总体。容量n的样本的经验分布函数记为Fn(x),可由样本中小于x的数据所占的比例得到,给定分布函数记为G(x),构造的统计量为,即两个分布函数之差的最大值,对于假设H0:总体服从给定的分布G(x),及给定的,根据Dn的极限分布(n时的分布)确定统计量关于是否接受H0的数量界限。因为这个检验需要给定G(x),所以当用于正态性检验时只能做标准正态检验,即H0:总体服从标准正态分布。Matlab命令:h =kstest(x)。3)Lilliefors检验它将Kolmogorov-Smirnov检验改进用于一般的正态性检验,即H0:总体服从正态分布,其中由样本均值和方差估计。Matlab命令:h =lilli

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论