新疆乌鲁木齐七十中2025届数学高二下期末联考试题含解析_第1页
新疆乌鲁木齐七十中2025届数学高二下期末联考试题含解析_第2页
新疆乌鲁木齐七十中2025届数学高二下期末联考试题含解析_第3页
新疆乌鲁木齐七十中2025届数学高二下期末联考试题含解析_第4页
新疆乌鲁木齐七十中2025届数学高二下期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆乌鲁木齐七十中2025届数学高二下期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A.1盏 B.3盏C.5盏 D.9盏2.已知函数,则“”是“在上单调递增”的(

)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知定义在R上的奇函数满足,当时,,且,则()A.2 B.1 C. D.4.复数满足,则()A. B. C. D.5.已知椭圆,则以点为中点的弦所在直线方程为()A. B.C. D.6.已知,且,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.平面内平行于同一直线的两直线平行,由类比思维,我们可以得到()A.空间中平行于同一直线的两直线平行B.空间中平行于同一平面的两直线平行C.空间中平行于同一直线的两平面平行D.空间中平行于同一平面的两平面平行8.执行如图所示的程序框图,若输出的结果为,则输入的正整数a的可能取值的集合是(

)A. B.C. D.9.已知随机变量~B(n,p),且E=2.4,D=1.44,则n,p值为()A.8,0.3 B.6,0.4 C.12,0.2 D.5,0.610.设曲线在点处的切线与直线垂直,则()A. B. C.-2 D.211.先后抛掷一枚质地均匀的骰子5次,那么不能作为随机变量的是()A.出现7点的次数 B.出现偶数点的次数C.出现2点的次数 D.出现的点数大于2小于6的次数12.中国古代数学的瑰宝——《九章算术》中涉及到一种非常独特的几何体——鳖擩,它是指四面皆为直角三角形的四面体.现有四面体为一个鳖擩,已知平面,,若该鳖擩的每个顶点都在球的表面上,则球的表面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若实数,满足条件,则的最大值为__________.14.如图,在长方体中,,,则三棱锥的体积为____________.15.函数部分图象如图,则函数解析式为______.16.正四棱柱的底面边长为2,若与底面ABCD所成角为60°,则和底面ABCD的距离是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的长轴长为,且椭圆与圆的公共弦长为(1)求椭圆的方程.(2)过点作斜率为的直线与椭圆交于两点,试判断在轴上是否存在点,使得为以为底边的等腰三角形.若存在,求出点的横坐标的取值范围,若不存在,请说明理由.18.(12分)命题方程表示双曲线;命题不等式的解集是.为假,为真,求的取值范围.19.(12分)如图,圆锥的轴截面为等腰为底面圆周上一点.(1)若的中点为,求证:平面;(2)如果,求此圆锥的体积;(3)若二面角大小为,求.20.(12分)已知函数f(x)=alnx﹣ex(a∈R).其中e是自然对数的底数.(1)讨论函数f(x)的单调性并求极值;(2)令函数g(x)=f(x)+ex,若x∈[1,+∞)时,g(x)≥0,求实数a的取值范围.21.(12分)(1)设是两个正实数,且,求证:;(2)已知是互不相等的非零实数,求证:三个方程,,中至少有一个方程有两个相异实根.22.(10分)已知a>0,设p:实数x满足x2-4ax+3a2<0,q(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

设塔顶的a1盏灯,由题意{an}是公比为2的等比数列,∴S7==181,解得a1=1.故选B.2、A【解析】f′(x)=x2+a,当a≥0时,f′(x)≥0恒成立,故“a>0”是“f(x)在R上单调递增”的充分不必要条件.故选A.3、C【解析】

根据题意,结合函数的奇偶性与对称性可得函数f(x)是周期为8的周期函数,由函数的奇偶性可得f(﹣2)=8,结合函数的解析式求出a的值,进而求出f(﹣1)的值,进而结合函数的奇偶性与对称性分析可得答案.【详解】根据题意,函数f(x)是定义在R上的奇函数,则f(﹣x)=﹣f(x),若函数f(x)满足f(x+2)=f(2﹣x),则有f(﹣x)=f(x+4),则有f(x+4)=﹣f(x),变形可得f(x+8)=﹣f(x+4)=f(x),则函数f(x)是周期为8的周期函数,又由函数f(x)是定义在R上的奇函数,且f(2)=﹣8,则f(﹣2)=8,若当﹣2≤x<0时,f(x)=ax﹣1(a>0),且f(﹣2)=a﹣2﹣1=8,解可得a,则f(﹣1)=()﹣1﹣1=2,则f(1)=﹣2,又由函数f(x)是周期为8的周期函数,则f(2019)=f(3+2016)=f(3)=f(1)=﹣2;故选:C.本题考查函数的奇偶性与周期性的应用,关键是分析函数的周期性,属于中档题.4、C【解析】

利用复数的四则运算可得,再利用复数的除法与减法法则可求出复数.【详解】,,故选C.本题考查复数的四则运算,考查复数的求解,考查计算能力,属于基础题.5、A【解析】

利用点差法求出直线的斜率,再利用点斜式即可求出直线方程.【详解】解:设以点为中点的弦与椭圆交于点,,,,则,,分别把点,的坐标代入椭圆方程得:,两式相减得:,,直线的斜率,以点为中点的弦所在直线方程为:,即,故选:.本题主要考查了点差法解决中点弦问题,属于中档题.6、C【解析】分析:已知,解出a,b的值,再根据充分条件和必要条件的定义进行求解.详解:a>0,b>0且a≠1,若logab>0,a>1,b>1或0<a<1,0<b<1,∴(a-1)(b-1)>0;若(a-1)(b-1)>0,则或则a>1,b>1或0<a<1,0<b<1,∴logab>0,∴“logab>0”是“(a-1)(b-1)>0”的充分必要条件.故选C.点睛:在判断充分、必要条件时需要注意:(1)确定条件是什么、结论是什么;(2)尝试从条件推导结论,从结论推导条件;(3)确定条件是结论的什么条件.抓住“以小推大”的技巧,即小范围推得大范围,即可解决充分必要性的问题.7、D【解析】

由平面中的线类比空间中的面即可得解。【详解】平面内平行于同一直线的两直线平行,由类比方法得:空间中平行于同一平面的两平面平行.故选:D本题主要考查了类比推理,考查平面中的线类比空间中的面知识,属于基础题。8、A【解析】由题意,循环依次为,,所以可能取值的集合为,故选A.9、B【解析】,选B.10、A【解析】

根据函数的求导运算得到导函数,根据题干所给的垂直关系,得到方程,进而求解.【详解】由题意得,,∵在点处的切线与直线垂直,∴,解得,故选:A.这个题目考查了函数的求导法则,涉及到导数的几何意义的应用,属于基础题.11、A【解析】

根据随机变量的定义可得到结果.【详解】抛掷一枚骰子不可能出现点,出现点为不可能事件出现点的次数不能作为随机变量本题正确选项:本题考查随机变量的定义,属于基础题.12、B【解析】分析:把此四面体放入长方体中,BC,CD,AB刚好是长方体的长、宽、高,算出长方体体对角线即可.详解:把此四面体放入长方体中,BC,CD,AB刚好是长方体的长、宽、高,则,,故.故选:B.点睛:本题主要考查了转化与化归思想的运用.二、填空题:本题共4小题,每小题5分,共20分。13、6【解析】分析:现根据约束条件画出可行域,再利用几何意义求最值,求出最优解,然后求解的最大值即可.详解:现根据实数满足条件,画出可行域,如图所示,由目标函数,则,结合图象可知,当直线过点时,目标函数取得最大值,此时最大值为.点睛:本题主要考查了简单的线性规划求最大值,其中画出约束条件所表示的平面区域,根据直线的几何意义求解是解答的关键,着重考查了推理与运算能力.14、3【解析】分析:等体积转化详解:根据题目条件,在长方体中,==3所以三棱锥的体积为3点睛:在求解三棱锥体积问题时,如果所求椎体高不好确定时,往往要通过等体积转化,找到合适的高所对应的椎体进行计算,体现了数学中的转化与化归思想,要深刻体会.15、【解析】

先计算出,结合图象得出该函数的周期,可得出,然后将点代入函数解析式,结合条件可求出的值,由此得出所求函数的解析式.【详解】由图象可得,且该函数的最小正周期为,,所以,.将点代入函数解析式得,得.,即,,所以,得.因此,所求函数解析式为,故答案为.本题考查三角函数的解析式的求解,求解步骤如下:(1)求、:,;(2)求:根据题中信息求出最小正周期,利用公式求出的值;(3)求:将对称中心点和最高、最低点的坐标代入函数解析式,若选择对称中心点,还要注意函数在该点附近的单调性.16、.【解析】分析:确定A1C1到底面ABCD的距离为正四棱柱ABCD﹣A1B1C1D1的高,即可求得结论.详解:∵正四棱柱ABCD﹣A1B1C1D1,∴平面ABCD∥平面A1B1C1D1,∵A1C1⊂平面A1B1C1D1,∴A1C1∥平面ABCD∴A1C1到底面ABCD的距离为正四棱柱ABCD﹣A1B1C1D1的高∵正四棱柱ABCD﹣A1B1C1D1的底面边长为2,AC1与底面ABCD成60°角,∴A1A=2tan60°=故答案为.点睛:本题考查线面距离,确定A1C1到底面ABCD的距离为正四棱柱ABCD﹣A1B1C1D1的高是解题的关键.如果直线和已知的平面是平行的,可以将直线和平面的距离,转化为直线上一点到平面的距离.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】试题分析:(1)由长轴长可得值,公共弦长恰为圆直径,可知椭圆经过点,利用待定系数法可得椭圆方程;(2)可令直线的解析式为,设,的中点为,将直线方程与椭圆方程联立,消去,利用根与系数的关系可得,由等腰三角形中,可得,得出中.由此可得点的横坐标的范围.试题解析:(1)由题意可得,所以.由椭圆与圆:的公共弦长为,恰为圆的直径,可得椭圆经过点,所以,解得.所以椭圆的方程为.(2)直线的解析式为,设,的中点为.假设存在点,使得为以为底边的等腰三角形,则.由得,故,所以,.因为,所以,即,所以.当时,,所以;当时,,所以.综上所述,在轴上存在满足题目条件的点,且点的横坐标的取值范围为.点睛:本题主要考查椭圆的标准方程和几何性质,直线与椭圆的位置关系,基本不等式,及韦达定理的应用.解析几何大题的第一问一般都是确定曲线的方程,常见的有求参数确定方程和求轨迹确定方程,第二问一般为直线与椭圆的位置关系,解决此类问题一般需要充分利用数形结合的思想转化给出的条件,可将几何条件转化为代数关系,从而建立方程或者不等式来解决.18、【解析】分析:先化简命题p和q,再根据为假,为真得到真假或假真,最后得到m的不等式组,解不等式组即得m的取值范围.详解:真:,真:或∴因为为假,为真所以真假或假真,真假得假真得∴范围为.点睛:(1)本题主要考查命题的化简和复合命题的真假,意在考查学生对这些知识的掌握水平.(2)复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.19、(1)证明见解析(2)(3)60°【解析】

(1)连接、,由三角形中位线定理可得,由圆周角定理我们可得,由圆锥的几何特征,可得,进而由线面垂直的判定定理,得到平面,则,结合及线面垂直的判定定理得到平面;(2)若,易得,又由,我们求出圆锥的底面半径长及圆锥的高,代入圆锥体积公式,即可得到圆锥的体积;(3)作于点,由面面垂直的判定定理可得平面,作于点,连,则为二面角的平面角,根据二面角的大小为,设,,进而可求出的大小【详解】(1)如图:连接、,因为为的中点,所以.因为为圆的直径,所以,.因为平面,所以,所以平面,.又,,所以平面.(2),,,又,,.(3)作于点,平面平面且平面平面平面.再作于点,连,为二面角的平面角如图:,.设,,,,,,,.,解得,本题考查线面垂直的判定定理,圆锥体积的求法,二面角的作法与求法,解题关键(1)在于能利用线面垂直与线线垂直相互转化,(2)在于结合几何关系求出底面半径,(3)在于能正确作出二面角,能用三角函数基本定义表示基本线段关系,属于中档题20、(1)见解析;(2)【解析】

(1)函数f(x)的定义域为(1,+∞).求出函数的导函数,然后对a分类讨论可得原函数的单调性并求得极值;(2)对g(x)求导函数,对a分类讨论,当a≥1时,易得g(x)为单调递增,有g(x)≥g(1)=1,符合题意.当a<1时,结合零点存在定理可得存在x1∈(1,)使g′(x1)=1,再结合g(1)=1,可得当x∈(1,x1)时,g(x)<1,不符合题意.由此可得实数a的取值范围.【详解】(1)函数f(x)的定义域为(1,+∞).f′(x).①当a≤1时,f′(x)<1,可得函数f(x)在(1,+∞)上单调递减,f(x)无极值;②当a>1时,由f′(x)>1得:1<x,可得函数f(x)在(1,)上单调递增.由f′(x)<1,得:x,可得函数f(x)在(,+∞)单调递减,∴函数f(x)在x时取极大值为:f()=alna﹣2a;(2)由题意有g(x)=alnx﹣ex+ex,x∈[1,+∞).g′(x).①当a≥1时,g′(x).故当x∈[1,+∞)时,g(x)=alnx﹣ex+ex为单调递增函数;g(x)≥g(1)=1,符合题意.②当a<1时,g′(x),令函数h(x),由h′(x)1,c∈[1,+∞),可知:g′(x)为单调递增函数,又g′(1)=a<1,g′(x),当x时,g′(x)>1.∴存在x1∈(1,)使g′(x1)=1,因此函数g(x)在(1,x1)上单调递减,在(x1,+∞)上单调递增,又g(1)=1,∴当x∈(1,x1)时,g(x)<1,不符合题意.综上,所求实数a的取值范围为[1,+∞).本题考查利用导数研究函数的单调性,考查利用导数求函数的最值,考查数学转化思想方法及分类讨论的数学思想方法,考查了利用了进行放缩的技巧,是难

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论